A b C D e

Cho hình vẽ, biết CAb = 500; ACD = 110...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2015

A b C D e x

Kẻ Cx // Ab => góc CAb = ACx = 50(2 góc so le trong)

=> góc xCD = ACD - ACx = 110o - 50o = 60o

=> góc xCD = CDe mà 2 góc này ở vị trí So le trong => Cx // De mà Cx // Ab=> Ab //De

19 tháng 9 2017

A C x b e D 50 60

Kẻ Cx // Ab

Ta có : Cx // Ab

=> CAb=ACx 

Mà CAb =50o

=> ACx=50o

Lại có : ACx+DCx=ACD

Mà ACD=110o; ACx=50o

=> DCx=110-50

=> DCx=60o

=> DCx=CDe(=60o)

Mà DCx và CDe là 2 góc ở vị trí so le trong.

=> Cx//DE

Mà Cx//Ab ( cách vẽ )

=> Ab // DE.

Câu 8:

a) Tính \(\widehat{ACB}\)

Xét ΔABC có

\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)(định lí tổng ba góc trong một tam giác)

hay \(\widehat{ACB}=180^0-\widehat{BAC}-\widehat{ABC}=180^0-50^0-70^0=60^0\)

Vậy: \(\widehat{ACB}=60^0\)

b)

*Tính \(\widehat{AMC}\)

Ta có: CM là tia phân giác của \(\widehat{ACB}\)(gt)

\(\widehat{ACM}=\frac{\widehat{ACB}}{2}=\frac{60^0}{2}=30^0\)

Xét ΔACM có

\(\widehat{A}+\widehat{CMA}+\widehat{ACM}=180^0\)(định lí tổng ba góc trong một tam giác)

hay \(\widehat{AMC}=180^0-\widehat{A}-\widehat{ACM}=180^0-50^0-30^0=100^0\)

Vậy: \(\widehat{AMC}=100^0\)

*Tính \(\widehat{BMC}\)

Ta có: \(\widehat{AMC}+\widehat{BMC}=180^0\)(hai góc kề bù)

hay \(\widehat{BMC}=180^0-\widehat{AMC}=180^0-100^0=80^0\)

Vậy: \(\widehat{BMC}=80^0\)

Câu 9:

a) Chứng minh ΔABE=ΔACD

Xét ΔABE và ΔACD có

AE=AD(gt)

\(\widehat{A}\) chung

AB=AC(ΔABC cân tại A)

Do đó:ΔABE=ΔACD(c-g-c)

b) Chứng minh BE=CD

Ta có: ΔABE=ΔACD(cmt)

⇒BE=CD(hai cạnh tương ứng)

c) Chứng minh DE//BC

Xét ΔADE có AD=AE(gt)

nên ΔADE cân tại A(định nghĩa tam giác cân)

\(\widehat{ADE}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔADE cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{ADE}=\widehat{ABC}\)

\(\widehat{ADE}\)\(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên DE//BC(dấu hiệu nhận biết hai đường thẳng song song)(đpcm)

Câu 10:

image

a) Xét ΔADC và ΔABE có

AD=AB(gt)

\(\widehat{DAC}=\widehat{BAE}\left(=90^0+\widehat{BAC}\right)\)

AC=AE(gt)

Do đó: ΔADC=ΔABE(c-g-c)

⇒CD=BE(hai cạnh tương ứng)

Gọi F là giao điểm của CD và BE

Gọi G là giao điểm của CD và AB

Xét ΔGBF có

\(\widehat{G_1}+\widehat{B_1}+\widehat{F_1}=180^0\)(định lí tổng ba góc trong một tam giác)

hay \(\widehat{F_1}=180^0-\left(\widehat{G_1}+\widehat{B_1}\right)\)

\(\widehat{G_1}=\widehat{G_2}\)(hai góc đối đỉnh)

\(\widehat{B_1}=\widehat{ADC}\)(ΔADC=ΔABE)

nên \(\widehat{G_1}+\widehat{B_1}=\widehat{G_2}+\widehat{ADC}=180^0-\widehat{DAB}=180^0-90^0=90^0\)

\(F_1=180^0-90^0=90^0\)

⇒CD⊥BE(đpcm)

b) Xét ΔADI vuông tại I và ΔBAH vuông tại H có

AD=BA(gt)

\(\widehat{IAD}=\widehat{HBA}\left(=90^0-\widehat{BAH}\right)\)

Do đó: ΔADI=ΔBAH(cạnh huyền-góc nhọn)

⇒ID=HA(hai cạnh tương ứng)(1)

c) Xét ΔAHC vuông tại H và ΔEKA vuông tại K có

AC=EA(gt)

\(\widehat{HCA}=\widehat{KAE}\left(=90^0-\widehat{HAC}\right)\)

Do đó: ΔAHC=ΔEKA(cạnh huyền-góc nhọn)

⇒AH=EK(hai cạnh tương ứng)(2)

Từ (1) và (2) suy ra ID=EK

Gọi J là giao điểm của DE và IK

\(\widehat{KJE}=\widehat{IJD}\)(hai góc đối đỉnh)

Xét ΔKJE vuông tại K và ΔIJD vuông tại I có

EK=ID(cmt)

\(\widehat{KJE}=\widehat{IJD}\)(cmt)

Do đó: ΔKJE=ΔIJD(cạnh góc vuông-góc nhọn kề)

⇒KJ=IJ và EJ=DJ(các cặp cạnh tương ứng)

Ta có KJ=IJ(cmt)

mà J nằm giữa I và K

nên J là trung điểm của IK(a)

Ta có: EJ=DJ(cmt)

mà J nằm giữa E và D

nên J là trung điểm của ED(b)

Từ (a) và (b) suy ra IK và ED có trung điểm chung là J

7 tháng 3 2020

oengu thế ngu như con chó

13 tháng 10 2018

chưa có hình vẽ thì sao mà làm

7 tháng 4 2016

1.b

2.b

3.c

Bài 3: 

\(\widehat{xAC}=\dfrac{180^0-80^0}{2}=50^0\)

\(\Leftrightarrow\widehat{xAC}=\widehat{ACB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên Ax//BC

Bài 15: 

\(\widehat{ABH}+\widehat{A}=90^0\)

\(\widehat{ACK}+\widehat{A}=90^0\)

Do đó: \(\widehat{ABH}=\widehat{ACK}\)