Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(3x^2y+5x^2+3y^2+5y=16\)
\(\Leftrightarrow3y\left(x^2+y\right)+5\left(x^2+y\right)=16\)
\(\Leftrightarrow\left(x^2+y\right)\left(3y+5\right)=16\)
a) Ta có A = -|x| + 2
= 2 - |x|
Lại có \(\left|x\right|\ge0\forall x\Rightarrow2-\left|x\right|\le2\forall x\)
Dấu "=" xảy ra khi x = 0
Vậy Max A = 2 <=> x = 0
b) Ta có B = -x2 + 5 = 5 - x2
Lại có \(x^2\ge0\forall x\Rightarrow5-x^2\le5\forall x\)
Dấu "=" xảy ra khi x2 = 0
=> x = 0
Vậy Max B = 5 <=> x = 0
c) Ta có : C = -|x + 1| + 12 = 12 - |x + 1|
Lại có \(\left|x+1\right|\ge0\forall x\Rightarrow12-\left|x+1\right|\le12\forall x\)
Dấu "=" xảy ra <=> x + 1 = 0
=> x = - 1
Vậy Max C = 12 <=> x = - 1
d) Ta có D = -2|x + 4| + 5 = 5 - 2|x + 4|
Lại có \(2\left|x+4\right|\ge0\forall x\Rightarrow5-2\left|x+4\right|\le5\forall x\)
Dấu "=" xảy ra <=> x + 4 = 0
=> x = - 4
Vậy Max D = 5 <=> x = -4
A, \(B=1+3+3^2+...+3^{100}\)
\(3B=3+3^2+3^3+...+3^{101}\)
\(3B-B=\left(3+3^2+3^3+...+3^{101}\right)-\left(1+3+3^2+...+3^{100}\right)\)
\(2B=3^{101}-1\)
\(2B+1=3^{101}\)
Suy ra \(3^{x+1}=3^{101}\)
\(\Leftrightarrow x+1=101\)
\(\Leftrightarrow x=100\)
B, \(B=101\times102\times103\times104-121\)
Chứ số tận cùng của \(101\times102\times103\times104\)cũng là chữ số tận cùng của \(1\times2\times3\times4=4\)
Suy ra chữ số tận cùng của \(B=101\times102\times103\times104-121\)là \(4-1=3\).
Mà số chính phương không thể có chữ số tận cùng là \(3\)nên \(B\)không là số chính phương.