Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left(y+3\right)^3-\left(y-1\right)^3\)
=(y+3-y+1)\(\left[\left(y+3\right)^2+\left(y+3\right)\left(y-1\right)+\left(y-1\right)^2\right]\)
=4.(\(y^2+6y+9\)+\(y^2-y+3y-3\)+\(y^2-2y+1\))
=4(\(3y^2+6y+7\))
=\(12y^2+24y+28\)
3.
\(a^3+b^3=\left(a+b\right).\left(a^2-ab+b^2\right)\)
\(=1.\left(a^2+b^2-ab\right)\) (1)
Lại có : \(a^2+b^2=\left(a+b\right)^2-2ab=1-2ab\) thay vào (1) có :
\(a^3+b^3=1.\left(1-2ab-ab\right)\)
\(=1-3ab\left(đpcm\right)\)
a) \(\dfrac{\left(a-b\right)\left(c-d\right)}{\left(b^2-a^2\right)\left(d^2-c^2\right)}=\dfrac{\left(a-b\right)\left(c-d\right)}{\left(a-b\right)\left(a+b\right)\left(c-d\right)\left(c+d\right)}=\dfrac{1}{\left(a+b\right)\left(c+d\right)}\)
b) \(\dfrac{m^4-m}{2m^2+2m+2}=\dfrac{m\left(m^3-1\right)}{2\left(m^2+m+1\right)}=\dfrac{m\left(m-1\right)\left(m^2+m+1\right)}{2\left(m^2+m+1\right)}=\dfrac{m\left(m-1\right)}{2}\)
c) \(\dfrac{ab^2+a^3-a^2b}{a^3+b^3}=\dfrac{a\left(b^2+a^2-ab\right)}{\left(a+b\right)\left(a^2-ab+b^2\right)}=\dfrac{a}{a+b}\)
a) vì a<b
<=>-5a>-5b
mà 7>2
<=>7-5a>2-5b
b) vì m<n <=>2m<2n<=>2m-5<2n-5
a, \(\frac{x}{m}+1=m\)
=> \(\frac{x}{m}+\frac{m}{m}=\frac{m^2}{m}\)
=> \(x+m=m^2=>x+m-m^2=0\)
b, \(\frac{x-2m}{3}=8-\frac{m}{3}\)
=> \(\frac{x-2m}{3}=\frac{24}{3}-\frac{m}{3}\)
=> \(x-2m=24-m\)
=> \(x-24-m\)
c, \(\frac{x+a}{b}-\frac{b}{a}=\frac{x-b}{a}+\frac{a}{b}\)
=> \(\frac{a.\left(x+a\right)}{ab}-\frac{b^2}{ab}=\frac{b.\left(x-b\right)}{ab}+\frac{a^2}{ab}\)
=> \(ax+a^2-b^2=bx-b^2+a^2\)
=> \(ax-bx+\left(a^2-a^2\right)-\left(b^2-b^2\right)=0\)
=> \(x.\left(a-b\right)=0\)
=> x= 0 hoặc a - b =0
Ta có :
a)\(\frac{m^4-m}{2m^2+2m+2}=\frac{m\left(m^3-1\right)}{2\left(m^2+m+1\right)}=\frac{m\left(m-1\right)\left(m^2+m+1\right)}{2\left(m^2+m+1\right)}=\frac{m^2-m}{2}\)
b) \(\frac{ab^2+a^3-a^2b}{a^3b+b^4}=\frac{a\left(a^2-ab+b^2\right)}{b\left(a^3+b^3\right)}=\frac{a\left(a^2-ab+b^2\right)}{b\left(a+b\right)\left(a^2-ab+b^2\right)}=\frac{a}{ab+b^2}\)
Bài làm
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
ta có (x-3)(x+5)+ 20
= x^2 +2x - 15 +20
= x^2 + 2x +1 - 16 + 20
= (x+1)^2 - 4
vì \(\left(x+1\right)^2\ge0\)với mọi x
\(\left(x+1\right)^2-4\ge-4\) (cộng cả hai vế với -4)
\(4-\left(x+1\right)^2\le4\) ( nhân cả hai vế với -1 )
Giả sử (x-3)(x+5)+20 lớn hơn hoặc bằng 4 với mọi x thuộc R
<=>(x-3)(x+5)+20-4 lớn hơn hoặc bằng 0
<=>X2+2x-15+20-4 lớn hơn hoặc bằng o
<=>x2+2x+1 lớn hơn hoặc bằng 0
<=>(x+1)2 lớn hơn hoặc bằng 0 ( luôn đúng )
Vậy (x-3)(x+5)+20 lớn hơn hoặc bằng 4
(x-3)(x+5)+20 lớn hơn hoặc bằng 4
<=>( x+1)2 =0
Dấu "=" xảy ra khi và chỉ khi x+1=0
<=>x=0-1=-1
a4mb4m-(ambm+1)(a2m b2m+1)(ambm-1)
=a4mb4m-(ambm+1)(ambm-1)(a2mb2m+1)
=a4mb4m-(a2mb2m-1)(a2mb2m+1)
=a4mb4m-a4mb4m +1
=1