
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a, \(A=\left\{13;14;15\right\}\)
b, \(B=\left\{1;2;3;4\right\}\)
c, \(C=\left\{13;14;15\right\}\)

\(a,\)
Ta có :
\(\hept{\begin{cases}x\le y\\y\le x\end{cases}}\Rightarrow x=y\)
Mà \(y\le5\le x\)
\(\Rightarrow x=y=5\)
\(b,\)
Ta có : \(\hept{\begin{cases}b\le a\\a\le3\end{cases}}\Rightarrow b\le a\le3\)
Mà \(a\le b\)
\(\Leftrightarrow a=b\)
\(a,b\in N\Rightarrow a,b=\left\{0;1;2;3\right\}\)
a,
Ta có :
\(x\le y\)
\(y\le5\le x\)
Ta có :
\(x\le y\) \(;\) \(y\le x\)
\(\Leftrightarrow x=y\)
\(y\le5\Leftrightarrow x;y\le5\)
Mà \(x;y\in N\)
\(\Leftrightarrow x;y\in\left\{0;1;2;3;4;5\right\}\)
+,Còn ý b tương tự bạn tự làm nha! dễ mà.

2/ Ta có : 4x - 3 \(⋮\) x - 2
<=> 4x - 8 + 5 \(⋮\) x - 2
<=> 4(x - 2) + 5 \(⋮\) x - 2
<=> 5 \(⋮\)x - 2
=> x - 2 thuộc Ư(5) = {-5;-1;1;5}
Ta có bảng :
x - 2 | -5 | -1 | 1 | 5 |
x | -3 | 1 | 3 | 7 |

1/
a/ Sai . Sửa : a \(\in N\Rightarrow a\ge0\) b/ Đúng
c/ Sai . Sửa : \(a\in N\)và b < a \(\Rightarrow b\)<0 c/ Sai . Sửa :a\(\in N\) và b\(\le0\Rightarrow\)a\(\ge b\)
2/
TH1 : a<b<0 TH2 : a<0<b TH3 : 0<a<b
Vậy có tất cả 3 trường hợp về thứ tự của 3 số a , b, 0
3/
a/ Đúng
b/ Sai . Sửa : Mọi a,b\(\in Z\); |a| > |b| thì:
- Với a,b đều là số nguyên dương thì a > b
- Với a ,b đều là số nguyên âm thì a < b
- Với a âm , b dương thì a < b
-Với a dương , b âm thì a > b
c/ Đúng

BÀi 1
Để A \(\in\) Z
=>\(\left(n+2\right)⋮\left(n-5\right)\)
=>\([\left(n-5\right)+7]⋮\left(n-5\right)\)
=>\(7⋮\left(n-5\right)\)
=>\(n-5\in\left\{1;7;-1;-7\right\}\)
=>\(n\in\left\{6;13;4;-2\right\}\)
Vậy \(n\in\left\{6;13;4;-2\right\}\)

Bài 1:
b) Ta có:
\(16^5=2^{20}\)
\(\Rightarrow B=16^5+2^{15}=2^{20}+2^{15}\)
\(\Rightarrow B=2^{15}.2^5+2^{15}\)
\(\Rightarrow B=2^{15}\left(2^5+1\right)\)
\(\Rightarrow B=2^{15}.33\)
\(\Rightarrow B⋮33\) (Đpcm)
c) \(C=5+5^2+5^3+5^4+...+5^{100}\)
\(\Rightarrow C=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)
\(\Rightarrow C=1\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{98}\left(5+5^2\right)\)
\(\Rightarrow\left(1+5^2+...+5^{98}\right)\left(5+5^2\right)\)
\(\Rightarrow C=Q.30\)
\(\Rightarrow C⋮30\) (Đpcm)
Bài 1 : a, \(A=1+3+3^2+...+3^{118}+3^{119}\)
\(A=\left(1+3+3^2+3^3\right)+...+\left(3^{116}+3^{117}+3^{118}+3^{119}\right)\)
\(A=\left(1+3+3^2+3^3\right)+...+3^{116}\left(1+3+3^2+3^3\right)\)
\(A=1.30+...+3^{116}.30=\left(1+...+3^{116}\right).30⋮3\)
Vậy \(A⋮3\)
b, \(B=16^5+2^{15}=\left(2.8\right)^5+2^{15}\)
\(=2^5.8^5+2^{15}=2^5.\left(2^3\right)^5+2^{15}\)
\(=2^5.2^{15}+2^{15}.1=2^{15}\left(32+1\right)=2^{15}.33⋮33\)
Vậy \(B⋮33\)
c, Tương tự câu a nhưng nhóm 2 số
Bài 2 : a, \(n+2⋮n-1\) ; Mà : \(n-1⋮n-1\)
\(\Rightarrow\left(n+2\right)-\left(n-1\right)⋮n-1\)
\(\Rightarrow n+2-n+1⋮n-1\Rightarrow3⋮n-1\)
\(\Rightarrow n-1\in\left\{1;3\right\}\Rightarrow n\in\left\{2;4\right\}\)
Vậy \(n\in\left\{2;4\right\}\) thỏa mãn đề bài
b, \(2n+7⋮n+1\)
Mà : \(n+1⋮n+1\Rightarrow2\left(n+1\right)⋮n+1\Rightarrow2n+2⋮n+1\)
\(\Rightarrow\left(2n+7\right)-\left(2n+2\right)⋮n+1\)
\(\Rightarrow2n+7-2n-2⋮n+1\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\in\left\{1;5\right\}\Rightarrow n\in\left\{0;4\right\}\)
Vậy \(n\in\left\{0;4\right\}\) thỏa mãn đề bài
c, tương tự phần b
d, Vì : \(4n+3⋮2n+6\)
Mà : \(2n+6⋮2n+6\Rightarrow2\left(2n+6\right)⋮2n+6\Rightarrow4n+12⋮2n+6\)
\(\Rightarrow\left(4n+12\right)-\left(4n+3\right)⋮2n+6\)
\(\Rightarrow4n+12-4n-3⋮2n+6\Rightarrow9⋮2n+6\)
\(\Rightarrow2n+6\in\left\{1;2;9\right\}\Rightarrow2n=3\Rightarrow n\in\varnothing\)
Vậy \(n\in\varnothing\)
bài này là trong cặp bằng nhau trong vio lớp 6 vòng 3
ab thỏa mãn là: 14;41;23;32;50