Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(9x^2+6xy+y^2=\left(3x\right)^2+2\times3xy+y^2=\left(3x+y\right)^2\)
b, \(6x-9-x^2=-\left(x^2-2\times3x+3^2\right)=-\left(x-3\right)^2\)
c, \(x^2+4y^2+4xy=x^2+2\times2xy+\left(2y\right)^2=\left(x+2y\right)^2\)
6) \(9x^2+6xy+y^2=\left(3x+y\right)^2\)
7) \(x^2-3x-y^2-3y=\left(x-y-3\right)\left(x+y\right)\)
8) \(x^2-2xy+y^2-16=\left(x-y\right)^2-16=\left(x-y-4\right)\left(x-y+4\right)\)
9) \(4x^2-y^2+4x+1=\left(2x+1\right)^2-y^2=\left(2x-y+1\right)\left(2x+y+1\right)\)
10) \(x^3-x+y^3-y=\left(x+y\right)\left(x^2-xy+y^2+1\right)\)
6) = (3x)2 + 2.(3x)y +y2 = (3x + y)2
7) = (x-y)(x+y)- 3(x+y) = (x+y)(x-y-3)
8) = (x-y)2 - 42 = (x-y-4)(x-y+4)
9) = ( 4x2 + 4x +1 ) - y2 = (2x+1)2 - y^2 = (2x+1-y)(2x+1+y)
10) =(x3+y3) - (x+y) = (x+y)(x2+xy+y2) - (x+y) = (x+y)(x2+xy+y2-1)
k mk đi nha
Áp dụng hằng đẳng thức bạn ơi =))
Ta thấy: (x + y )2 = x2 + 2.x.y + y2
=> 9x2 + y2 + 6xy = 9x2 + 6xy + y2
= (3x)2 + 2.3x.y + y2 = (3x + 4 )2
Bài làm:
Ta có: \(9x^2y^2+y^2-6xy+y+2\)
\(=\left(9x^2y^2-6xy+1\right)+\left(y^2+y+\frac{1}{4}\right)+\frac{3}{4}\)
\(=\left(3xy-1\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
=> BT lớn hơn hẳn ko
\(a.=x^3+3x^2y+3x^2y+9xy^2+3xy^2+9y^3\)
\(=x^2\left(x+3y\right)+3xy\left(x+3y\right)+3y^2\left(x+3y\right)\)
\(=\left(x+3y\right)\left(x^2+3xy+3y^2\right).\)
\(b.=9x^3+3x^2y+9x^2y+3xy^2+3xy^2+y^3\)
\(=3x^2\left(3x+y\right)+3xy\left(3x+y\right)+y^2\left(3x+y\right)\)
\(=\left(3x^2+3xy+y^2\right)\left(3x+y\right)\).
\(9x^2+6xy+y^2\)
\(=\left(3x\right)^2+2.3x.y+y^2\)
\(=\left(3x+y\right)^2\)
a ) 9x2+6xy+y2
=(3x)2+2.3xy+y2
=(3x+y)2