Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,(5x-2y)(x2-xy+1)=5x3-5x2+5x-2yx2+2xy2-2y
=5x3-7x2y+2xy2+5x-2y
b,(x-2)(x+2)(\(\dfrac{1}{2}\) x-5)=x2-4.\(\left(\dfrac{1}{2}x-5\right)\)
=\(\dfrac{1}{2}x^3-5x^2-2x+20\)
c,\(\left(x^2-2x+3\right)\left(\dfrac{1}{2}x-5\right)\)
=\(\dfrac{1}{2}x^3-5x^2-1x^2+10x+\dfrac{3}{2}x-15\)
=\(\dfrac{1}{2}x^3-6x^2+\dfrac{23}{2}x-15\)
d,\(\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)\)
=\(x^3+3x^2-5x-15+x^2-x^3+4x-4x^2\)
=\(-5x+4x-15\)
=\(-x-15\)
Chúc bạn học tốt(mỏi tay quá)
1. 8 - 12x + 6x2 - x3
= 23 - 3.22.x + 3.x2.2 - x3
=(2-x)3
2. 125x3 - 75x2 +15x - 1
=(5x)3 - 3.(5x)2.1 + 3.5x.12 - 13
=(5x - 1)3
3, 4 (sai đề)
5. x3 + 2x2 - 6x - 27
=(x3 - 27) + (2x2 - 6x)
=(x3 - 33) + (2x2 - 6x)
=(x -3)(x2 + 3x + 9) + 2x(x-3)
=(x-3)(x2 + 3x +9 +2x)
=(x-3)(x2 + 5x +9)
6. 12x3 + 4x2- 27x -9
=(12x3 + 4x2) - (27x + 9)
=4x2(3x + 1) - 9(3x +1)
=(3x -1)(4x2 -9)
=(3x-1)(2x-3)(2x+3)
a: \(=3x\left(x^2-2x+1\right)-2x\left(x^2-9\right)+4x\left(x-4\right)\)
\(=3x^3-6x^2+3x-2x^3+18x+4x^2-16x\)
\(=x^3-2x^2+5x\)
b: Sửa đề: \(\left(x^3+6x^2+12x+8\right)+3\left(x^2+4x+4\right)+3\left(x+2\right)\)
\(=x^3+6x^2+12x+8+3x^2+12x+12+3x+6\)
\(=x^3+9x^2+27x+26\)
Bài 1:
\(a,\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)\)
\(=x^6-3x^4+3x^2-1-x^6+1\)
\(=-3x^2\left(x^2-1\right)\)
\(b,\left(x^4-3x^2+9\right)\left(x^2+3\right)-\left(3+x^2\right)^3\)
\(=x^6+27-27-27x^2-9x^4-x^6\)
\(=-9x^2\left(3-x^2\right)\)
Bài 5:
\(A=x^2-2x+1\)
\(=\left(x^2-2x+1\right)-2\)
\(=\left(x-1\right)^2-2\)
Với mọi giá trị của x ta có:
\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2-2\ge-2\)
Vậy Min A = -2
Để A = -2 thì \(x-1=0\Rightarrow x=1\)
b, \(B=4x^2+4x+5\)
\(=\left(4x^2+4x+1\right)+4\)
\(=\left(2x+1\right)^2+4\)
Với mọi giá trị của x ta có:
\(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2+4\ge4\)
Vậy Min B = 4
Để B = 4 thì \(2x+1=0\Rightarrow2x=-1\Rightarrow x=-\dfrac{1}{2}\)
c, \(C=2x-x^2-4\)
\(=-\left(x^2-2x+1\right)-3\)
\(=-\left(x-1\right)^2-3\)
Với mọi giá trị của x ta có:
\(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-3\le-3\)Vậy Max C = -3
để C = -3 thì \(x-1=0\Rightarrow x=1\)
a) \(x^3-\dfrac{1}{9}x=0\)
\(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)
\(\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\\x+\dfrac{1}{3}=0\Leftrightarrow x=-\dfrac{1}{3}\end{matrix}\right.\)
b) \(x\left(x-3\right)+x-3=0\)
\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\\x+1=0\Rightarrow x=-1\end{matrix}\right.\)
c) \(2x-2y-x^2+2xy-y^2=0\) (thêm đề)
\(\Rightarrow2\left(x-y\right)-\left(x-y\right)^2=0\)
\(\Rightarrow\left(x-y\right)\left(2-x+y\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\\2-x+y=0\Rightarrow x-y=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\left(1\right)\\\left(1\right)\Rightarrow x-x=2\left(loại\right)\end{matrix}\right.\)
d) \(x^2\left(x-3\right)+27-9x=0\)
\(\Rightarrow x^2\left(x-3\right)+\left(x-3\right).9=0\)
\(\Rightarrow\left(x-3\right)\left(x^2+9\right)=0\)
\(\Rightarrow x-3=0\Rightarrow x=3.\)
Bài 2:
a: \(A=1999\cdot2001\)
\(=\left(2000-1\right)\left(2000+1\right)\)
\(=2000^2-1< 2000^2=B\)
Do đó: B lớn hơn
b: \(C=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\)
\(=2^{16}-1< 2^{16}=D\)
Do đó: D lớn hơn
1)
a) \(\dfrac{18ab}{27bc}=\dfrac{2a}{3c}\)
b) \(\dfrac{-21b^2y^2}{-28by}=\dfrac{3by}{4}\)
c) \(\dfrac{-49a^3}{14b^3}=\dfrac{-7a^3}{2b^3}\)
d) \(\dfrac{12x^3y^2}{18xy^5}=\dfrac{2x^2}{3y^3}\)
2)
a) \(\dfrac{a^3\left(a-5\right)}{a-5}=a^3\)
b) \(\dfrac{3\left(b+7\right)^4}{8\left(b+7\right)^6}=\dfrac{3}{8\left(b+7\right)^2}\)
c) \(\dfrac{15x\left(x+5\right)^2}{20x^2\left(x+5\right)}=\dfrac{3\left(x+5\right)}{4x}\)
d) \(\dfrac{x^3-4x^2}{y\left(x-4\right)}=\dfrac{x^2\left(x-4\right)}{y\left(x-4\right)}=\dfrac{x^2}{y}\)
e) \(\dfrac{5\left(a-2c\right)^2}{2a^2-4ac}=\dfrac{5\left(a-2c\right)^2}{2a\left(a-2c\right)}=\dfrac{5\left(a-2c\right)}{2a}\)
3)
a) \(\dfrac{ax-3a}{bx-3b}=\dfrac{a\left(x-3\right)}{b\left(x-3\right)}=\dfrac{a}{b}\) (câu này mình sửa lại đề)
b) \(\dfrac{5x+20y}{15x+60y}=\dfrac{5\left(x+4y\right)}{15\left(x+4y\right)}=\dfrac{1}{3}\)
c) \(\dfrac{3b-9c}{5b^2-15bc}=\dfrac{3\left(b-3c\right)}{5b\left(b-3c\right)}=\dfrac{3}{5b}\)
d) \(\dfrac{8a^2+40ab}{ab+5b^2}=\dfrac{8a\left(a+5b\right)}{b\left(a+5b\right)}=\dfrac{8a}{b}\)
4)
a) \(\dfrac{3x^2-12x+12}{x^4-8x}=\dfrac{3\left(x^2-4x+4\right)}{x\left(x^3-8\right)}\)
\(=\dfrac{3\left(x-2\right)^2}{x\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3\left(x-2\right)}{x\left(x^2+2x+4\right)}\)
b) \(\dfrac{7x^2+14x+7}{3x^2+3x}=\dfrac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}\)
\(=\dfrac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{7\left(x+1\right)}{3x}\)
5)
a) \(\dfrac{45x\left(3-x\right)}{15\left(x-3\right)^3}=\dfrac{-45x\left(x-3\right)}{15\left(x-3\right)^3}=\dfrac{-3x}{\left(x-3\right)^2}\)
b) \(\dfrac{36\left(x-2\right)^3}{32-16x}=\dfrac{36\left(x-2\right)^3}{-16\left(x-2\right)}=\dfrac{-9\left(x-2\right)^2}{4}\)
c) \(\dfrac{x^2-xy}{5y^2-5xy}=\dfrac{-x\left(y-x\right)}{5y\left(y-x\right)}=\dfrac{-x}{5y}\)
d) \(\dfrac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}=\dfrac{-\left(y+x\right)\left(x-y\right)}{\left(x-y\right)^3}=\dfrac{-x-y}{\left(x-y\right)^2}\)
1.
a, \(\dfrac{18ab}{27bc}=\dfrac{18ab:9b}{27bc:9b}=\dfrac{2a}{3c}\)
b, \(\dfrac{-21b^2y^2}{-28by}=\dfrac{-21b^2y^2:\left(-7\right)by}{-28by:\left(-7\right)by}=\dfrac{3by}{4}\)
c, \(\dfrac{-49a^3}{14b^3}=\dfrac{-49a^3:7}{14b^3:7}=\dfrac{-7a^3}{2b^3}\)
d, \(\dfrac{12x^3y^2}{18xy^5}=\dfrac{6xy^2\cdot2x^2}{6xy^2\cdot3y^3}=\dfrac{2x^2}{3y^3}\)
2.
a,\(\dfrac{a^3\cdot\left(a-5\right)}{a-5}=\dfrac{a^3}{1}=a^3\)
b,\(\dfrac{3\cdot\left(b+7\right)^4}{8\cdot\left(b+7\right)^6}=\dfrac{3}{8\cdot\left(b+7\right)^2}\)
c,\(\dfrac{15x\cdot\left(x+5\right)^2}{20x^2\cdot\left(x+5\right)}=\dfrac{3\cdot\left(x+5\right)}{4x}\)
d,\(\dfrac{x^3-4x^2}{y\cdot\left(x-4\right)}=\dfrac{x^2}{y}\)
e,\(\dfrac{5\cdot\left(a-2x\right)^2}{2a^2-4ac}=\dfrac{5\cdot\left(a-2x\right)}{2a}\)
3.
a,\(\dfrac{ax-3a}{bx-3b}=\dfrac{a\cdot\left(x-3\right)}{b\cdot\left(x-3\right)}=\dfrac{a}{b}\)
b, \(\dfrac{5x+20y}{15x+60y}=\dfrac{5\cdot\left(x+4y\right)}{15\cdot\left(x+4y\right)}=\dfrac{5}{15}=\dfrac{1}{3}\)
c, \(\dfrac{3b-9c}{5b^2-15bc}=\dfrac{3\cdot\left(b-3c\right)}{5b\cdot\left(b-3c\right)}=\dfrac{3}{5b}\)
d, \(\dfrac{8a^2+40ab}{ab+5b^2}=\dfrac{8a\cdot\left(a+5b\right)}{b\cdot\left(a+5b\right)}=\dfrac{8a}{b}\)
4.
a,\(\dfrac{3x^2-12x+12}{x^4-8x}=\dfrac{3\cdot\left(x^2-4x+4\right)}{x\cdot\left(x^3-8\right)}=\dfrac{3\cdot\left(x-2\right)^2}{x\cdot\left(x-2\right)\cdot\left(x^2+2x+4\right)}=\dfrac{3\cdot\left(x-2\right)}{x\cdot\left(x^2+2x+4\right)}=\dfrac{3\cdot\left(x-2\right)}{x\cdot\left(x+2\right)^2}\)
b, \(\dfrac{7x^2+14x+7}{3x^2+3x}=\dfrac{7\cdot\left(x^2+2x+1\right)}{3x\cdot\left(x+1\right)}=\dfrac{7\cdot\left(x+1\right)^2}{3x\cdot\left(x+1\right)}=\dfrac{7\cdot\left(x+1\right)}{3x}\)
5.
a, \(\dfrac{45x\cdot\left(3-x\right)}{15x\cdot\left(x-3\right)^3}=\dfrac{3\cdot\left(3-x\right)}{\left(x-3\right)^3}=\dfrac{-3\cdot\left(x-3\right)}{\left(x-3\right)^3}=\dfrac{-3}{\left(x-3\right)^2}\)
b, \(\dfrac{36\cdot\left(x-2\right)^3}{36-16x}=\dfrac{36\cdot\left(x-2\right)^3}{16\cdot\left(2-x\right)}=\dfrac{36\cdot\left(-\left(x-2\right)\right)^3}{16\cdot\left(2-x\right)}=\dfrac{-36\cdot\left(2-x\right)^3}{16\cdot\left(2-x\right)}=\dfrac{-9\cdot\left(2-x\right)^2}{4}\)
c, \(\dfrac{x^2-xy}{5y^2-5xy}=\dfrac{x\cdot\left(x-y\right)}{5y\cdot\left(y-x\right)}=\dfrac{-x\cdot\left(y-x\right)}{5y\cdot\left(y-x\right)}=\dfrac{-x}{5y}\)
d, \(\dfrac{y^2-x^2}{x^3-3x^2y+3xy^2+y^3}=\dfrac{\left(x+y\right)\cdot\left(x-y\right)}{\left(x-y\right)^3}=\dfrac{-\left(x+y\right)\cdot\left(y-x\right)}{\left(x-y\right)^3}=\dfrac{-\left(x+y\right)}{\left(x-y\right)^2}\)
Xin mọi người ai biết giúp mình nha. Mình cảm ơn nhiều. Tí nữa mình đi học rồi