\(A=-81-25.\left|2-x\right|+40\)

giup mk voi

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2015

A=-41-25.|2-x|

nếu 2-x>=0<=>x<=2

thì |2-x|=2-x

=>A=-41-25.(2-x)=-41-50+25x=25x-91

nếu 2-x<0<=>x>2

thì |2-x|=x-2

=>A=-41-25.(x-2)

=-41-25x+50

=9-25x

vậy A=25x-91 khi x<=2

A=9-25x khi x>2

13 tháng 9 2015

-Nếu \(x\le2\) thì A=-81-25(2-x)+40=-81-50+25x+40=25x-91

-Nếu \(x\ge2\) thì A=-81-25(x-2)+40=-81-25x+50+40=9-25x

13 tháng 9 2015

Rút gọn hử

A = -41-25.|2-x|

hết.

NV
20 tháng 9 2020

a/ \(\sqrt{4a^2}=\sqrt{\left(2a\right)^2}=\left|2a\right|=2a\)

b/ \(\sqrt{\left(\frac{2}{5}\right)^2\left(x-2\right)^2}=\frac{2}{5}\left|x-2\right|=\frac{2}{5}\left(x-2\right)=\frac{2x}{5}-\frac{4}{5}\)

c/ \(\sqrt{5^2\left(3-a\right)^2}+3=5\left|3-a\right|+3=\left[{}\begin{matrix}18-5a\left(a\le3\right)\\5a-12\left(a\ge3\right)\end{matrix}\right.\)

d/ \(=\frac{1}{2\left(x-5\right)}.6\left|x-5\right|=\frac{3\left|x-5\right|}{x-5}=\left[{}\begin{matrix}3\left(x>5\right)\\-3\left(x< 5\right)\end{matrix}\right.\)

12 tháng 12 2015

\(F=\frac{5}{3-\sqrt{5}}-\frac{4}{3+\sqrt{5}}=\frac{5\left(3+\sqrt{5}\right)}{9-5}-\frac{4\left(3-\sqrt{5}\right)}{9-5}=\frac{15+5\sqrt{5}-12+4\sqrt{5}}{4}=\frac{3+9\sqrt{5}}{4}\)

24 tháng 3 2018

\(pt\left(1\right)\Leftrightarrow x\left(x+2\right)+y\left(y+2\right)=11\)

Đặt a=x(x+2); b=y(y+2) thì: \(hpt\Leftrightarrow\hept{\begin{cases}a+b=11\\ab=24\end{cases}}\)

Khi đó a,b là 2 nghiệm của pt ẩn m: 

\(m^2-11m+24=0\Leftrightarrow\left(m-8\right)\left(m-3\right)=0\Rightarrow\hept{\begin{cases}m=8\\m=3\end{cases}}\)

Tới đây bn tự làm tiếp.

7 tháng 1 2018

C, d của VT đâu b

28 tháng 12 2018

a) \(A=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(\dfrac{x-1}{x+\sqrt{x}+1}\right)=\left[\dfrac{2\sqrt{x}+x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right].\dfrac{x+\sqrt{x}+1}{x-1}=\dfrac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{x+\sqrt{x}+1}{x-1}=\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\left(x-1\right)}=\dfrac{1}{x-1}\)

b) Khi x=5+2\(\sqrt{3}\Leftrightarrow P=\dfrac{1}{5+2\sqrt{3}-1}=\dfrac{1}{4+2\sqrt{3}}=\dfrac{4-2\sqrt{3}}{\left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right)}=\dfrac{4-2\sqrt{3}}{16-12}=\dfrac{4-2\sqrt{3}}{4}=\dfrac{2\left(2-\sqrt{3}\right)}{4}=\dfrac{2-\sqrt{3}}{2}\)

c) Ta có \(\left|A\right|\le1\Leftrightarrow\left|\dfrac{1}{x-1}\right|\le1\Leftrightarrow\dfrac{1}{\left|x-1\right|}\le1\Leftrightarrow\left|x-1\right|\ge1\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x-1\ge1\\1-x\le1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x\ge2\\x\le0\end{matrix}\right.\)

Kết hợp với ĐK

Vậy x\(\le0\) hoặc \(x\ge2\) thì \(\left|A\right|\le1\)

28 tháng 12 2018

a) \(A=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(\dfrac{x-1}{x+\sqrt{x}+1}\right)=\left[\dfrac{2\sqrt{x}+x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right].\dfrac{x+\sqrt{x}+1}{x-1}=\dfrac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{x+\sqrt{x}+1}{x-1}=\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\left(x-1\right)}=\dfrac{1}{x-1}\)

b) Khi x=5+2\(\sqrt{3}\Leftrightarrow P=\dfrac{1}{5+2\sqrt{3}-1}=\dfrac{1}{4+2\sqrt{3}}=\dfrac{4-2\sqrt{3}}{\left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right)}=\dfrac{4-2\sqrt{3}}{16-12}=\dfrac{4-2\sqrt{3}}{4}=\dfrac{2\left(2-\sqrt{3}\right)}{4}=\dfrac{2-\sqrt{3}}{2}\)

c) Ta có \(\left|A\right|\le1\Leftrightarrow\left|\dfrac{1}{x-1}\right|\le1\Leftrightarrow\dfrac{1}{\left|x-1\right|}\le1\Leftrightarrow\left|x-1\right|\ge1\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x-1\ge1\\1-x\le1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x\ge2\\x\le0\end{matrix}\right.\)

Kết hợp với ĐK

Vậy x\(\le0\) hoặc \(x\ge2\) thì \(\left|A\right|\le1\)