Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 262 + 52.24 + 242
= 262 + 2.26.24 + 242
= ( 26 + 24 )2
= 502 = 2500
b) 30032 - 32
= ( 3003 + 3 ) ( 3003 - 3 )
= 3006 . 3000 = 9018000
c) 872 + 732 - 272 -132
= ( 872 - 132 ) + ( 732 - 272 )
= [ ( 87 + 13 )( 87- 13 )] + [ ( 73 - 27 )( 73 + 27 ) ]
= ( 100 . 74 ) + ( 46 . 100 )
= 7400 + 4600 = 12000
d)792 - 79.58 + 292
= 792 - 2.79.29 + 292
= ( 79 - 29 )2
= 502 = 2500
a) 262 + 52 . 24 + 242 = 262 + 2 . 26 . 24 + 242
= ( 26 + 24 )2
= 502
= 2500
b) 30032 - 32 = ( 3003 - 3 ) . ( 3003 + 3 )
= 3000. 3006
= 9018000
c) 872 + 732 - 272 - 132 = ( 872 - 272 ) + ( 732 - 132 )
= ( 87 - 27 ) . ( 87 + 27 ) + ( 73 - 13 ) . ( 73+13)
= 60 . 114 + 60 . 86
= 60 . ( 114 + 86 )
= 60 . 200
= 12000
d) 792 - 79 . 58 + 292 = 792 - 2 . 79 . 29 + 292
= ( 79 - 29 )2
= 502
= 2500
a) \(25^2-15^2=\left(25-15\right)\left(25+15\right)\)
= 400
b) \(87^2+73^2-27^2-13^2\)
\(\Leftrightarrow\left(87^2-13^2\right)\)+\(\left(73^2-27^2\right)\)
\(\Leftrightarrow\left(87+13\right)\left(87-13\right)+\left(73+27\right)\left(73-27\right)\)
\(\Leftrightarrow7400+4600=12000\)
a) Ta có: \(37^2+2\cdot37\cdot13+13^2\)
\(=\left(37+13\right)^2=50^2=2500\)
b) Ta có: \(201^2=\left(200+1\right)^2\)
\(=200^2+2\cdot200+1\)
\(=40000+200+1=40201\)
c) Ta có: \(37\cdot43=\left(40+3\right)\cdot\left(40-3\right)\)
\(=40^2-3^2=1600-9=1591\)
a, x2 + 10x + 27
Đặt A = x2 + 2. x. 5 + 52 + 2
= ( x + 5 )2 + 2
Vì ( x + 5 )2 \(\ge\)0 với mọi x
=> ( x + 5 )2 + 2 \(\ge\)2 với mọi x
Hay A \(\ge\)2
Dấu " = " xảy ra khi:
( x + 5 )2 = 0
x + 5 = 0
x = - 5
Vậy Min A = 2 khi x = - 5
b, x2 + x + 7
Đặt B = x2 + x + 7
\(=x^2+x+\frac{1}{4}+\frac{27}{4}\)
\(=\left[x^2+2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]+\frac{27}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{27}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\)với mọi x
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{27}{4}\ge\frac{27}{4}\)với mọi x
Hay B \(\ge\frac{27}{4}\)
Dấu " = " xảy ra khi:
\(\left(x+\frac{1}{2}\right)^2=0\)
\(x+\frac{1}{2}=0\)
\(x=-\frac{1}{2}\)
Vậy Min B = \(\frac{27}{4}\)khi x = \(-\frac{1}{2}\)
a) x2 + 10 x + 27 =( x2 + 2. 5 . x + 52 ) + 2 = ( x + 5 ) 2 + 2
Vì ( x + 5 ) 2 \(\ge\) 0 với mọi x nên ( x + 5 ) 2 + 2 \(\ge\) 2 với mọi x
Dấu bằng xảy ra \(\Leftrightarrow\)x + 5 = 0 \(\Leftrightarrow\) x = -5
b) x2 + x + 7 = 0 \(\Leftrightarrow\) x2 + 2. x . \(\frac{1}{2}\)+ \(\left(\frac{1}{2}\right)^2\) + \(\frac{27}{4}\) = 0 \(\Leftrightarrow\)( x + 1/2) 2 + 27/4 = 0
Vì ( x + 1/2 )2 \(\ge\) 0 với mọi x nên ( x + 1/2) 2 + 27/4 \(\ge\)27/4 với mọi x
Dấu bằng xảy ra \(\Leftrightarrow\)x+ 1/2 = 0 \(\Leftrightarrow\) x = ---\(\frac{1}{2}\)
c + d ) Tương tự a, b
e) x2 + 14 x + y2 - 2y +7 = 0 \(\Leftrightarrow\) ( x2 + 2. x. 7 + 72 ) + ( y2 -- 2y + 1 ) -43 = 0 \(\Leftrightarrow\) ( x + 7 ) 2 + ( y -- 1 ) 2 --43 = 0 ( 1 )
Vì ( x + 7 )2 \(\ge\) 0 và ( y -- 1 )2 \(\ge\) 0 với mọi x, y nên ( 1 ) \(\ge\) --43 với mọi x, y
Dấu bằng xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x+7=0\\y-1=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=-7\\y=1\end{cases}}\)
Giải:
1). \(25^2-15^2\)
\(=\left(25-15\right)\left(25+15\right)\)
\(=10.40\)
\(=400\)
2). \(87^2+73^2-27^2-13^2\)
\(=\left(87^2-13^2\right)+\left(73^2-27^2\right)\)
\(=\left(87-13\right)\left(87+13\right)+\left(73-27\right)\left(73+27\right)\)
\(=74.100+46.100\)
\(=100\left(74+46\right)\)
\(=100.120\)
\(=12000\)
Chúc bạn học tốt!!!
Bài 1:
\(A=23^2+46\cdot37+37^2=23^2+2\cdot23\cdot37+37^2=\left(23+37\right)^2=60^2=3600\)
\(B=27^2-44\cdot27+22^2=27^2-2\cdot27\cdot22+22^2=\left(27-22\right)^2=5^2=25\)
Bài 2:
\(A=x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\)
Vì: \(\left(x-2\right)^2\ge0\) với mọi x
=> \(\left(x-2\right)^2+1\ge1\)
Vậy GTNN của A là 1 khi x=2
\(A=23^2+2.23.37+37^2=\left(23+37\right)^2=60^2=3600\)
\(B=27^2-2.27.22+22^2=\left(27-22\right)^2=5^2=25\)
\(A=x^2-4x+5=\left(x-2\right)^2+1\ge1\)
=> A min=1 khi x=2
Câu 1:
a. \(\frac{1}{4}x^2-64\)
\(=\left(\frac{1}{2}x\right)^2-8^2\)
\(=\left(\frac{1}{2}x+8\right)\left(\frac{1}{2}x-8\right)\)
b. \(\frac{1}{27}+x^3\)
\(=\left(\frac{1}{3}\right)^3+x^3\)
\(=\left(\frac{1}{3}+x\right)\left(\frac{1}{9}-\frac{1}{3}x+x^2\right)\)
c. \(\left(a+b\right)^3-\left(a-b\right)^3\)
\(=\left(a^3+3a^2b+3ab^2+b^3\right)-\left(a^3-3a^2b+3ab^2-b^3\right)\)
\(=a^3+3a^2b+3ab^2+b^3-a^3+3a^2b+3ab^2+b^3\)
\(=6a^2b+2b^3\)
\(=2b\left(3a^2+b^2\right)\)
a.A= \(x^2+10x+27\)
\(=x^2+2.x.5+25+2\)
\(\left(x+5\right)^2+2\ge2\forall x\)
Dấu " = " xảy ra <=> x + 5 = 0
=> x = -5
Vậy Min A = 2 <=> x = -5
b.B = \(x^2-12x+37\)
\(=x^2-2.x.6+36+1\)
\(=\left(x-6\right)^2+1\ge1\forall x\)
Dấu " = " xảy ra <=> x - 6 = 0
=> x = 6
Vậy Min B = 1 <=> x = 6
c. \(x^2+x+7\)
\(=x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{27}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}\forall x\)
Dấu " =" xảy ra <=> \(x+\dfrac{1}{2}=0\)
\(x=\dfrac{-1}{2}\)
Vậy Min C = \(\dfrac{27}{4}\Leftrightarrow x=\dfrac{-1}{2}\)
Bài giải:
a) 732 – 272 = (73 + 27)(73 – 27) = 100 . 46 = 4600
b) 372 - 132 = (37 + 13)(37 – 13) = 50 . 25 = 100 . 12 = 1200
c) 20022 – 22 = (2002 + 2)(2002 – 2) = 2004 . 2000 = 400800
câu b tại sao lại suy ra đc 100.12 vậy chị ?