K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) 6x2 - 6xy - 4x + 4y= 6x (x - y) - 4 (x - y)= (x - y) (6x - 4)b) x3 + 10x2 + 25x - xy2= x (x2 + 10x + 25 - y2)= x [(x + 5)2 - y2]= x (x + 5 + y) (x + 5 - y)
5 tháng 11 2020

a, \(6x^2-6xy-4x+4y=6x\left(x-y\right)-4\left(x-y\right)=\left(6x-4\right)\left(x-y\right)\)

b, \(x^3+10x^2+25x-xy^2=x\left(x^2+10x+25-y^2\right)\)

\(=x\left[\left(x+5\right)-y^2\right]=x\left(x+5-y\right)\left(x+5+y\right)\)

13 tháng 7 2017

a)  2x2 - 98 = 0

     2x2        = 0 + 98

     2x2        = 98

       x2        = 98 : 2

       x2         = 49

       x          = \(\sqrt{49}\)

=>   x   = 7

13 tháng 7 2017

Ta có : 2x2 - 98 = 0

=> 2(x2 - 49) = 0

Mà : 2 > 0

Nên x2 - 49 = 0

=> x2 = 49

=> x2 = -7;7

24 tháng 5 2018

c.

C=6(xy)^2-6(xy)y^2-(2x)^3+8(xy)^2+5(xy)^2-5(xy).y^2

C=(6+8+5)(xy)^2-(6+5)(xy)^2.y^2 -(2x)^3+8.(xy)^2

x.y=1; 2x=1

C=19-11.4-1+8

C=26-44=30-40-4-4=-10-8=-18

24 tháng 5 2018

a)

<=>A=3x[10x^2-2x+1-2(5x^2-x-2)]=3x(1+4)

=3.5.x

x=15

A=3.5.15=15^2=(4^2-1).15=4.15.4-15=60.4-15

=240-15=225

c) \(x^2+x-ax-a\)

\(=x\left(x+1\right)-a\left(x+1\right)\)

\(=\left(x+1\right)\left(x-a\right)\)

d) \(2xy-ax+x^2-2ay\)

\(=2y\left(x-a\right)+x\left(x-a\right)\)

\(=\left(x-a\right)\left(2y+x\right)\)

e) \(x^2y+xy^2-x-y\)

\(=xy\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(xy-1\right)\)

f) \(25-10x-4y^2+x^2\)

\(=\left(x^2-10x+25\right)-\left(2y\right)^2\)

\(=\left(x-5\right)^2-\left(2y\right)^2\)

\(=\left(x-5-2y\right)\left(x-5+2y\right)\)

g) \(x^3-6xy+9y^2-36\)

h) \(4x^2-9y^2+4x-6y\)

\(=\left(2x\right)^2-\left(3y\right)^2+2\left(2x-3y\right)\)

\(=\left(2x-3y\right)\left(2x+3y\right)+2\left(2x-3y\right)\)

\(=\left(2x-3y\right)\left(2x+3y+2\right)\)

k) \(-x^2+5x+2xy-5y-y^2\)

\(=-\left(x^2-2xy+y^2\right)+5\left(x-y\right)\)

\(=-\left(x-y\right)^2+5\left(x-y\right)\)

\(=\left(x-y\right)\left(-x+y+5\right)\)

i) \(4x^2-25y^2-6x+15y\)

\(=\left(2x\right)^2-\left(5y\right)^2-3\left(2x-5y\right)\)

\(=\left(2x-5y\right)\left(2x+5y\right)-3\left(2x-5y\right)\)

\(=\left(2x-5y\right)\left(2x+5y-3\right)\)

28 tháng 1 2020

a, \(x\left(y+z\right)^2+y\left(x+z\right)^2+z\left(x+y\right)^2+4xyz\)

\(=x\left(y+z\right)^2+x^2\left(y+z\right)+yz\left(y+z\right)\)

\(=\left(y+z\right)\left(xy+xz+z^2+yz\right)\)

\(=\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]\)

\(=\left(y+z\right)\left(x+z\right)\left(x+y\right)\)

b, \(yz\left(y+z\right)+xz\left(z-x\right)-xy\left(x+y\right)\)

\(=yz\left(y+z\right)+xz^2-x^2z-x^2y-xy^2\)

\(=yz\left(y+z\right)-x\left(y+z\right)\left(y-z\right)-x^2\left(y+z\right)\)

\(=\left(y+z\right)\left(yz-xy+xz-x^2\right)\)

\(=\left(y+z\right)\left[y\left(z-x\right)+x\left(z-x\right)\right]\)

\(=\left(y+z\right)\left(y+x\right)\left(z-x\right)\)

12 tháng 7 2018

\(A=x^2+3x+7\)

\(A=x^2+2x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+7\)

\(A=\left(x+\frac{3}{2}\right)^2-\frac{9}{4}+7\)

\(A=\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\)

Nhận xét: \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{3}{2}\right)^2=0\Rightarrow x=\frac{-3}{2}\)

Vậy \(minA=\frac{19}{4}\Leftrightarrow x=\frac{-3}{2}\)

Các câu khác lm tương tự nhé, lần sau đừng đưa nhiều câu cùng một lúc lên thế này, đưa từng câu một thôi thì bn sẽ có câu tl nhanh hơn đấy

12 tháng 7 2018

Uk.Mk nhớ rồi!

3 tháng 10 2017

đề bài đâu

ucche

3 tháng 10 2017

cô hk ghi nha bn

sorry nha

28 tháng 9 2018

\(4x^2+4x+1\)

\(=\left(2x\right)^2+2.2x.1+1\)

\(=\left(2x+1\right)^2\)

\(1+12x+36x^2\)

\(=1+2.6x+\left(6x\right)^2\)

\(=\left(1+6x\right)^2\)

25 tháng 7 2021

\(4x^2+12x+9=\left(2x+3\right)^2\)

\(25x^2+10x+5=\left(5x+1\right)^2+4\)( bạn xem lại đề )

\(x^2+6x+9x^2=10x^2+6x=2x\left(5x+3\right)\)

\(25x^2+10xy+y^2=\left(5x+y\right)^2\)

24 tháng 10 2017

a) x2 - 9 + (x - 3)

= (x- 3)(x + 3) + (x - 3)

= (x - 3)(x + 3 + 1)

= (x - 3)(x + 4)

b) x3 - 4x2 + 4x - xy2

= x(x2 - 4x + 4 - y2)

= \(x\left [ (x - 2)^{2} - y^{2}\right ]\)

= x(x - 2 - y)(x - 2 + y)

= x(x - y - 2)(x + y - 2)

c) x3 - 4x2 + 12x - 27

= x3 - 27 - 4x2 + 12x

= (x - 3)(x2 + 3x + 9) - 4x(x - 3)

= (x - 3)(x2 + 3x + 9 - 4x)

= (x - 3)(x2 - x + 9)

e) 5x3 - 5x2y - 10x2 + 10xy

= 5x(x2 - xy - 2x + 2y)

= \(5x\left [ x(x - y) - 2(x - y) \right ]\)

= 5x(x - y)(x - 2)

câu f pn coi lại mũ của 3x nha nếu mũ 2 thì lm như dưới

f) 3x2 - 6xy + 3y2 - 12z2

= 3(x2 - 2xy + y2 - 4z2)

= \(3\left [ (x - y)^{2} - (2z)^{2} \right ]\)

= 3(x - y - 2z)(x - y + 2z)

pn coi lại đề câu d với f nhé

16 tháng 8 2018

a) \(4x^2-12x+9=\left(2x\right)^2-2.2x.3+3^2=\left(2x-3\right)^2\)

b) \(4x^2+4x+1=\left(2x\right)^2+2.2x.1+1^2=\left(2x+1\right)^2\)

c) \(1+12x+36x^2=1^2+2.6x.1+\left(6x\right)^2=\left(1+6x\right)^2\)

d) \(9x^2-24xy+16y^2=\left(3x\right)^2-2.3x.4y+\left(4y\right)^2=\left(3x-4y\right)^2\)

f) \(-x^2+10x-25=-\left(x^2-10x+25\right)=-\left(x-5\right)^2\)

g) \(-16a^4b^6-24a^5b^5-9a^6b^4=-\left(16a^4b^6+24a^5b^5+9a^6b^4\right)\)

                             \(=-\left[\left(4a^2b^3\right)^2+2.4a^2b^3.3a^3b^2+\left(3a^3b^2\right)^2\right]\)

                              \(=-\left(4a^2b^3+3a^3b^2\right)^2\)

h) \(25x^2-20xy+4y^2=\left(5x\right)^2-2.5x.2y+\left(2y\right)^2\) \(=\left(5x-2y\right)^2\)

i) \(25x^4-10x^2y+y^2=\left(5x^2\right)^2-2.5x^2.y+y^2=\left(5x^2-y\right)^2\)