K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2019

\(\hept{\begin{cases}a+b=c+d\Rightarrow\left(a+b\right)^2=\left(c+d\right)^2\Rightarrow a^2+2ab+b^2=c^2+2cd+d^2\\a^2+b^2=c^2+d^2\end{cases}}\)

\(\Rightarrow2ab=2cd\Rightarrow ab=cd\Rightarrow\frac{a}{d}=\frac{b}{c}=k\Rightarrow\hept{\begin{cases}a=dk\\b=ck\end{cases}}\)

Xét \(a^2+b^2=c^2+d^2\Leftrightarrow\left(dk\right)^2+b^2=\left(ck\right)^2+d^2\Leftrightarrow d^2\left(k^2-1\right)=b^2\left(k^2-1\right)\)

\(\Leftrightarrow\left(d^2-b^2\right)\left(k^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}d^2-b^2=0\\k^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}d=\pm b\\k=\pm1\end{cases}}\Rightarrow\orbr{\begin{cases}a=\pm c\\a=\pm d;c=\pm b\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}d^{2005}=b^{2005};a^{2005}=c^{2005}\\a^{2005}=d^{2005};c^{2005}=b^{2005}\end{cases}\Rightarrow\orbr{\begin{cases}a^{2005}+b^{2005}=c^{2005}+d^{2005}\\a^{2005}+b^{2005}=c^{2005}+d^{2005}\end{cases}}}\)

\(\Rightarrow a^{2005}+b^{2005}=c^{2005}+d^{2005}\left(đpcm\right)\)

13 tháng 9 2018

\(a^3\) + \(b^3\) + \(c^3\) = \(\left(a+b+c\right)^3\) + 3 ( a + b ) (b + c )( c + a)

-> 1 = 1 + 3 ( a + b) ( b + c ) ( c + a )

-> ( a + b ) ( b + c ) ( c + a) = 0

-> ( 1- a ) ( 1 - b) ( 1 -c ) = 0

Tôn tại ít nhất một số 1 

Mà  a + b + c = 0 -> có hai số đối nhau

-> a2005+b2005 +c2005 =1 = 1 ( 2005 là số lẻ )

Tk mk nha

21 tháng 8 2018

a)   \(35^{2005}-35^{2004}=35^{2004}.\left(35-1\right)=35^{2004}.34=35^{2004}.2.17\)\(⋮\)\(17\)

c)    \(27^3+9^5=3^9+3^{10}=3^9\left(1+3\right)=3^9.4\) \(⋮\)\(4\)

hok tốt

20 tháng 6 2018

a,

x=2005=> 2006=x+1 . Thay vào biểu thức A có:

\(A=x^{20}-\left(x+1\right)x^{19}+\left(x+1\right)x^{18}-\left(x+1\right)x^{17}+....+\left(x+1\right)x^2-\left(x+1\right)x+\left(x+1\right)\)A=\(x^{20}-x^{20}+x^{19}-x^{19}+x^{18}-x^{18}+...+x^3+x^2-x^2-x+x+1\)

A=1

20 tháng 6 2018

b,

B=\(x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+\left(x-1\right)x\)

B=\(x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)

B=x=14