K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

Từ giả thiết suy ra: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+\left(\dfrac{1}{c}-\dfrac{1}{a+b+c}\right)=0\)

\(\Rightarrow\dfrac{a+b}{ab}+\dfrac{a+b}{c\left(a+b+c\right)}=0\)

\(\Rightarrow\) (a + b)[c(a + b + c) + ab] = 0

\(\Rightarrow\) (a + b)(ac + ab + bc + c2) = 0

\(\Rightarrow\) (a + b)(b + c)(a + c) = 0

P = (a2004 - b2004)(b2005 + c2005)(c2006 - a2006)

= (a + b)(b + c)(a + c) = 0

2 tháng 8 2017

Ta có: (a3 + 3ab2)2 = a6 + 6a4b2 + 9a2b4 = 20062

(b3 + 3a2b)2 = b6 + 6a2b4 + 9a4b2 = 20052

=> (a3 + 3ab2)2 - (b3 + 3a2b)2 = a6 - 3a4b + 3a2b4 - b6 = 20062 - 20052

Hay (a2 - b2)3 = 4011. Vậy P = a2 - b2 = \(\sqrt[3]{4011}\)

20 tháng 10 2016

Bạn tham khảo :

Ta có :

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)

\(\Rightarrow\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+3=1\)

\(\Rightarrow\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+2=0\)

\(\Rightarrow abc\left(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+2\right)=abc.0\)

\(\Rightarrow a^2b+b^2c+a^2c+b^2a+c^2a+c^2b+2abc=0\)

\(\Rightarrow\left(a^2b+ab^2\right)+\left(b^2c+abc\right)+\left(a^2c+abc\right)+\left(c^2a+c^2b\right)=0\)

\(\Rightarrow ab\left(a+b\right)+bc\left(a+b\right)+ac\left(a+b\right)+c^2\left(a+b\right)=0\)

\(\Rightarrow\left(ab+bc+ac+c^2\right)\left(a+b\right)=0\)

\(\Rightarrow\left[\left(ab+bc\right)+\left(ac+c^2\right)\right]\left(a+b\right)=0\)

\(\Rightarrow\left[b\left(a+c\right)+c\left(a+c\right)\right]\left(a+b\right)=0\)

\(\Rightarrow\left(a+c\right)\left(b+c\right)\left(a+b\right)=0\)

TH1 : \(a+c=0\)

\(\Rightarrow a=-c\)

\(\Rightarrow c^{2006}=a^{2006}\)

\(\Rightarrow P=\left(a^{2004}-b^{2004}\right)\left(b^{2005}+c^{2005}\right)\left(c^{2006}-a^{2006}\right)\)

\(=\left(a^{2004}-b^{2004}\right)\left(b^{2005}+c^{2005}\right)0\)

\(=0\)

CMTT đều có \(P=0\)

Vậy ...

20 tháng 10 2016

hay quá cảm ơn nha nhưng có cách nào gọn hơn ko

17 tháng 6 2017

\(1=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1+\left(b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{a}{bc}\right)\)

\(\Leftrightarrow\left(b+c\right)\left(\dfrac{bc+ac+ab+a^2}{abc}\right)=0\)

\(\dfrac{\Leftrightarrow\left(b+c\right)\left(a+b\right)\left(a+c\right)}{abc}=0\Rightarrow\left[{}\begin{matrix}a=-c\\a=-b\\b=-c\end{matrix}\right.\)

Xét 3 TH

=> P=0 ( đề bài BT ở giữa có 1 số mũ sai nha )

11 tháng 7 2015

(a+ b)3 = a3 + 3a2b + 3ab2 + b3 = (a3 + 3ab2) + (b3 + 3a2b) = 2006 + 2005 = 4011

=> a + b = \(\sqrt[3]{4011}\)

(a - b)3 = a3 - 3a2b + 3ab2 - b3 = (a3 + 3ab2) - (b3 + 3a2b) = 2006 - 2005 = 1

=> a - b = 1

=> P = a2 - b2 = (a - b)(a + b) = \(\sqrt[3]{4011}\)

11 tháng 7 2015

trời ơi mik cũng chán quá đây nè giờ chẳng muốn giải gì hết

24 tháng 12 2016

\(-S=\left(2006^2-2005^2\right)+...+\left(2^2-1^2\right)\) làm số dương cho đỡ rối

\(-S=2006+2005+...+2+1=\frac{2006.2007}{2}=1003.2007\)

S=-1003.2007