Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
i) \(2345-1000\div\left[19-2\left(21-18\right)^2\right]\)
\(=\)\(2345-1000\div\left[19-2.3^2\right]\)
\(=\)\(2345-1000\div\left[19-2.9\right]\)
\(=\)\(2345-1000\div\left[19-18\right]\)
\(=\)\(2345-1000\div1\)
\(=\)\(2345-1000\)
\(=\)\(1345\)
j) \(128-\left[68+8\left(37-35\right)^2\right]\div4\)
\(=\)\(128-\left[68+8.2^2\right]\div4\)
\(=\)\(128-\left[68+8.4\right]\div4\)
\(=\)\(128-\left[68+32\right]\div4\)
\(=\)\(128-100\div4\)
\(=\)\(128-25\)
\(=\)\(3\)
k) \(568-\left\{5\left[143-\left(4-1\right)^2\right]+10\right\}\div10\)
\(=\)\(568-\left\{5\left[143-3^2\right]+10\right\}\div10\)
\(=\)\(568-\left\{5\left[143-9\right]+10\right\}\div10\)
\(=\)\(568-\left\{5.134+10\right\}\div10\)
\(=\)\(568-\left\{670+10\right\}\div10\)
\(=\)\(568-680\div10\)
\(=\)\(568-68\)
\(=\)\(500\)
a) \(107-\left\{38+\left[7.3^2-24\div6+\left(9-7\right)^3\right]\right\}\div15\)
\(=\)\(107-\left\{38+\left[7.3^2-24\div6+2^3\right]\right\}\div15\)
\(=\)\(107-\left\{38+\left[7.9-4+8\right]\right\}\div15\)
\(=\)\(107-\left\{38+\left[63-4+8\right]\right\}\div15\)
\(=\)\(107-\left\{38+67\right\}\div15\)
\(=\)\(107-105\div15\)
\(=\)\(107-7\)
\(=\)\(7\)
b) \(307-\left[\left(180-160\right)\div2^2+9\right]\div2\)
\(=\)\(307-\left[20\div4+9\right]\div2\)
\(=\)\(307-\left[5+9\right]\div2\)
\(=\)\(307-14\div2\)
\(=\)\(307-7\)
\(=\)\(300\)
c) \(205-\left[1200-\left(4^2-2.3\right)^3\right]\div40\)
\(=\)\(205-\left[1200-\left(16-6\right)^3\right]\div40\)
\(=\)\(205-\left[1200-10^3\right]\div40\)
\(=\)\(205-\left[1200-1000\right]\div40\)
\(=\)\(205-200\div40\)
\(=\)\(205-5\)
\(=\)\(200\)
A= 1+2+22+23+.......+298+299
A= (1+2)+(22+23)+.......+(298+299 )
A=3+22.(1+2)+...+298.(1+2)
A= 3+22.3+...+298.3
A=3.(22+...+298)
Vid 3 chia hết cho 3 nên A chia hết cho 3
Đơn giản như đang giỡn
HT
a)\(x+12=-23+5\)
\(< =>x+12+23-5=0\)
\(< =>x+30=0\)
\(< =>x=-30\)
S = 1 + 3 + 32 + 33 + ... + 38 + 39
S = ( 1 + 3 ) + ( 32 + 33 ) + ... + ( 38 + 39 )
S = 4 + ( 1 . 32 + 3 .32 ) + .. + ( 1. 38 + 3 . 38 )
S = 4 + 4 .32 + .. + 4 . 38
S = 4 ( 1 + 32 + ... + 38 ) \(⋮\)4
Vậy S \(⋮\)4 ( đpcm )
Học tốt
#Dương
S = 1 + 3 + 32 + 33 + 34+35+ 36 + 37 + 38+39
S=( 1 + 3)+(32 + 33)+(34+35)+(36 + 37)+(38+39)
s=4+32.(3+1)+32.(3+1)+34.(3+1)+36.(3+1)+38.(3+1)
S=4.(1+32+34+36+38)
CHIA HẾT CHO 4
a. S = 1 + 2 + 2^2 + 2^3 + ... + 2^8 + 2^9
Ta có: 2 = 1 . 2
2^2 = 2 . 2
2^3 = 2^2 . 2
.....
=> 1 + 2 + 2^2 + ... + 2^8 + (2^8 . 2)
=> 1 + 2 + 2^2 + ... + (2^8 . 3)
=> 1 + 2 + 2^2 + ... + 2^7 + (2^7 .6)
=> 1 + 2 + 2^2 + ... + (2^7 . 7)
=> .....
=> 1 + 2 . 311
\(5^{20}:\left(5^{15}.6+5^{15}.19\right)\)
\(=5^{20}:\left(5^{15}\left(6+19\right)\right)\)
\(=5^{20}:\left(5^{15}.25\right)\)
\(=5^{20}:\left(5^{15}.5^2\right)\)
\(=5^{20}:\left(5^{15+2}\right)\)
\(=5^{20}:5^{17}\)
\(=5^{20-17}\)
\(=5^3=125\)
a) 15 + 23 = 1 + 8 = 9 = 32 ( là số chính phương )
b) 52 + 122 = 25 + 144 = 169 = 132 ( là số chính phương )
c) 26 + 62 = 64 + 36 = 100 = 1002 ( là số chính phương )
d) 13 + 23 + 33 + 43 + 53 + 63
= 1 + 8 + 27 + 64 + 125 + 216
= 441 = 212 ( là số chính phương )
a) 15 + 23=1 + 8 = 9 (là số chính phương)
b) 52 + 122= 25 + 144= 169 (là số chính phương)
c) 26 + 62= 64 + 36=100 (là số chính phương)
d) 142 – 122= 196 - 144=52 (không là số chính phương)
e) 13 + 23 + 33 + 43 + 53 + 63= 1 + 8 + 27 + 64 + 125 + 216 = 411 (là số chính phương)
d) 135 - 5(x+4) = 35
5(x+4) = 100
x+4 = 20
x = 16
e) 25 + 3(x-8)=106
3(x-8) = 81
x-8=27
x=35
a) 2(x - 51) = 2.23 + 20
2(x - 51) = 16 + 20
2(x - 51) = 36
x - 51 = 36 : 2
x - 51 = 18
x = 18 + 51
x = 69
b) 450 : (x - 19) = 50
x - 19 = 50.450
x - 19 = 22500
x = 22500 + 19
x = 22519
c) 4(x - 3) = 72 - 110
4(x - 3) = 49 - 1
4(x - 3) = 48
x - 3 = 48 : 4
x - 3 = 12
x = 12 + 3
x = 15
d) 135 - 5(x + 4) = 35
-5(x + 4) = 35 - 135
-5(x + 4) = -100
x + 4 = (-100) : (-5)
x + 4 = 20
x = 20 - 4
x = 16
e) 25 + 3(x - 8) = 106
3(x - 8) = 106 - 25
3(x - 8) = 81
x - 8 = 81 : 3
x - 8 = 27
x = 27 + 8
x = 35
f) 32(x + 4) - 52 = 5.22
9(x + 4) - 25 = 20
9(x + 4) = 20 + 25
9(x + 4) = 45
x + 4 = 45 : 9
x + 4 = 5
x = 5 - 4
x = 1
a) \(5x-65=5.3^2 \\ 5x-65=45\\5x=45+65\\5x=110\\x=22\)
b) \(200-(2x+6)=4^3\\2x+6=200-4^3\\2x+6=136\\2x=130\\x=65\)
c) \(2(x-51)=2.2^3+20\\2(x-51)=16+20\\2(x-51)=36\\x-51=18\\x=51+18=69\)
d) \(135-5(x+4)=35\\5(x+4)=135-45\\5(x-4)=90\\x-4=18\\x=18+4=22\)
e) \((2x-4)(15-3x)=0\\2(x-2).3(5-x)=0\\(x-2)(5-x)=0\\ \left[ \begin{array}{l}x-2=0\\5-x=0\end{array} \right. \\ \left[ \begin{array}{l}x=2\\x=5\end{array} \right.\)
f) \(2^{x+1} . 2^{2014}=2^{2016} \\ (2^{x+1} . 2^{2014}):2^{2014}=2^{2016} :2^{2014} \\ 2^{x=1}=2^{2016-2014} \\2^{x+1}=2^2\\x+1=2\\x=1\)
g) \(15+(x-1)^3=43\\(x-1)^3=15-42\\(x-1)^3=-27\\(x-1)^3=(-3)^3\\x-1=-3\\x=-2\)
h) \(15-x=17+(-9)\\15-x=17-9\\15-x=8\\x=15-8\\x=7\)
i) \(|x-5|=|-7|+|-4|\\|x-5|=7+4\\|x-5|=11\\ \left[ \begin{array}{l}x-5=11\\x-5=-11\end{array} \right. \\ \left[ \begin{array}{l}x=16\\x=-6\end{array} \right.\)
k) \(|x-3|-12=-9+|-7|\\|x-3|-12=-9+7\\|x-3|-12=-2\\|x-3|=10 \\ \left[ \begin{array}{l}x-3=10\\x-3=-10\end{array} \right. \\ \left[ \begin{array}{l}x=13\\x=-7\end{array} \right.\)