K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2019

\(3x\left(x^2-5x+3\right)+\left(x+1\right)\left(x+2\right)\)

\(=3x^3-15x^2+9x+x^2+2x+x+2\)

\(=3x^3-14x^2+13x+2\)

23 tháng 9 2019

a/ \(3x\left(x^2-5x+3\right)+\left(x+1\right)\left(x+2\right)\)

\(=3x^3-15x^2+9x+\left(x^2+2x+x+2\right)\)

\(=3x^3-15x^2+9x+x^2+2x+x+2\)

\(=3x^3-14x^2+13x+2\)

b/ \(\left(x+2\right)^2+\left(x-3\right)^2-\left(x-1\right)\left(x+1\right)\)

\(=\left(x^2+4x+4\right)+\left(x^2-6x+9\right)-\left(x^2-1\right)\)

\(=x^2+4x+4+x^2-6x+9-x^2+1\)

\(=x^2-2x+14x\)

3 tháng 2 2021

a) (5x - 1)(2x + 1) = (5x -1)(x + 3)

<=> (5x - 1)(2x + 1) - (5x -1)(x + 3) = 0

<=> (5x - 1)(2x + 1 - x - 3) = 0

<=> (5x - 1)(x - 2) = 0

<=> \(\orbr{\begin{cases}5x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0,2\\x=2\end{cases}}\)

Vậy x = 0,2 ; x = 2 là nghiệm phương trình

b) x3 - 5x2 - 3x + 15 = 0

<=> x2(x - 5) - 3(x - 5) = 0

<=> (x2 - 3)(x - 5) = 0

<=> \(\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(x-5\right)=0\)

<=> \(x-\sqrt{3}=0\text{ hoặc }x+\sqrt{3}=0\text{ hoặc }x-5=0\)

<=> \(x=\sqrt{3}\text{hoặc }x=-\sqrt{3}\text{hoặc }x=5\)

Vậy \(x\in\left\{\sqrt{3};\sqrt{-3};5\right\}\)là giá trị cần tìm

3 tháng 2 2021

c) (x - 3)2 - (5 - 2x)2 = 0

<=> (x - 3 + 5 - 2x)(x - 3 - 5 + 2x) = 0

<=> (-x + 2)(3x - 8) = 0

<=> \(\orbr{\begin{cases}-x+2=0\\3x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)

Vậy tập nghiệm phương trình \(S=\left\{2;\frac{8}{3}\right\}\)

d) x3 + 4x2 + 4x = 0

<=> x(x2 + 4x + 4) = 0

<=> x(x + 2)2 = 0

<=> \(\orbr{\begin{cases}x=0\\\left(x+2\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)

Vậy tập nghiệm phương trình S = \(\left\{0;-2\right\}\)

19 tháng 9 2020

Bài 1: Khai triển các hằng đẳng thức

a) ( x - 3 )( x2 + 3x + 9 )

= x3 - 33

= x3 - 27

b) ( 5x - 1 )( 1 + 5x + 25x2 )

= ( 5x - 1 )(25x2 + 5x + 1 )

= (5x)3 - 1

= 125x3 - 1

c) ( x2 - 1 ) ( x4 + x2 + 1 )

= (x2)3 - 1

= x6 - 1


19 tháng 9 2020

a) ( x - 3 )( x2 + 3x + 9 )=x3-9

b) ( 5x - 1 ) ( 1 + 5x + 25x2 )=125x3-1

c) ( x2 - 1 ) ( x4 + x2 + 1 )=x6-1

năm nay mới lên lớp 8 nên chưa hỉu lắm!!

7657567868976987097907808796979

1/ (x-1)3 - (x+1)3 + 6(x+1) (x-1)

kết hợp 2 bài nhân đơn thức vs đa thức và nhân đa thức vs đa thức vô làm!!

54745764747858857674747568879940457

28 tháng 7 2019

Bài 2:

a) \(x^2+y^2-9-2xy\)

\(=\left(x^2-2xy+y^2\right)-3^2\)

\(=\left(x-y\right)^2-3^2\)

\(=\left(x-y-3\right)\left(x-y+3\right)\)

b) \(4x^2-5x-9\)

\(=4x^2+4x-9x-9\)

\(=4x\left(x+1\right)-9\left(x+1\right)\)

\(=\left(x+1\right)\left(4x-9\right)\)

28 tháng 7 2019

\(\left(2x-3\right)^2-\left(4x-1\right)\left(x+2\right)=4x^2-12x+9-4x^2-7x+2=-19x+11\)

\(\left(3x+2\right)\left(3x-2\right)-\left(3x-1\right)^2=9x^2-4-9x^2+6x-1=6x-5\)

\(x^2+y^2-9-2xy=\left(x-y\right)^2-9=\left(x-y-3\right)\left(x-y+3\right)\)

\(4x^2-5x-9=\left(4x-9\right)\left(x+1\right)\)

\(\left(x-3\right)^2-\left(x-1\right)\left(x-2\right)=5\Leftrightarrow x^2-6x+9-x^2+3x-2=5\)

\(\Leftrightarrow-3x=-2\Leftrightarrow x=x=\frac{2}{3}\)

\(3x^2+5x-8=0\Leftrightarrow\left(x-1\right)\left(3x+8\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{8}{3}\end{cases}}\)

30 tháng 9 2017

a) x3 - x + 3x2y + 3xy2 + y3 - y
=(x3 + 3x2y + 3xy2 + y3) - ( x + y )
=(x+y)3 - (x+y)
=(x+y)(x2+2xy+y2-1) = (x+y)(x+y-1)(x+y+1)

30 tháng 9 2017

Bài 2a) 5x (x - 1) = x - 1

<=> 5x (x - 1) - (x - 1) = 0

<=> (x - 1)(5x - 1) = 0

[\(\begin{matrix}x-1=0\\5x-1=0\end{matrix}\)=> [\(\begin{matrix}x=1\\5x=1\end{matrix}\)=>[\(\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\)

Vậy x = 1 và x = \(\dfrac{1}{5}\)

26 tháng 6 2019

câu này hay thế!

26 tháng 6 2019

câu 1:

\(a,\left(5x+1\right)^2-\left(5x+3\right)\left(5x-3\right)=30\)

=> \(25x^2+10x+1-\left(25x^2-9\right)=30\)

=> \(25x^2+10x+1-25x^2+9=30\)

=> \(10x+10=30\)

=> \(10x=20\)

=> \(x=2\)

Vậy..........

\(b,\left(2x+3\right)^2-\left(2x-3\right)^2+4\left(x^2-6x\right)=64\)

=> \(6.4x+4x^2-24x=64\)

=> \(24x+4x^2-24x=64\)

=> \(4x^2=64\)

=> \(x^2=64:4=16\)

=> \(\left|x\right|=\sqrt{16}\)

=> \(x=\pm4\)

Vậy \(x\in\left\{4;-4\right\}\)

27 tháng 10 2018

Bài 1: Thực hiện phép tính

a) 3x(2x2 - 5x + 9) = \(6x^3-15x^2+27x\)

b) 5x(x2-xy+1) = \(5x^3-5xy+5x\)

c) -2/3x2y(3xy-x2+y) = \(-2x^3y^2+\dfrac{2}{3}x^4y-\dfrac{2}{3}x^2y^2\)

2) Thực hiện phép tính

a) (5x-2y) (x2-xy+1) = \(5x^3+5x-7y-2x^3y+2xy^2\)

b) (x+3y)(x2-2xy+y) = \(x^3-x^2y+xy+6xy^2+y^2\)

c) (3x-5y) (4x+ 7y) = \(12x^2-xy-35y^2\)

Bài 3: Rút gọn các biểu thức sau(bằng cách khai triển hằng đẳng thức):

a) (x+y)2+(x-y)2

= \(x^2+2xy+y^2+x^2-2xy+y^2\)

= \(\left(x^2+x^2\right)+\left(2xy-2xy\right)+\left(y^2+y^2\right)\)

= \(2x^2+2y^2=2\left(x^2+y^2\right)\)

b) (x+2)(x-2)-(x-3)(x+1)

= \(x^2-4\) - \(\left(x^2-2x-3\right)\)= \(x^2-4-x^2+2x+3\)

= \(\left(x^2-x^2\right)+2x+\left(-4+3\right)\)=\(2x-1\)

c) (x-2)(x+2)-(x-2)2

=>\(x^2-4-\left(x^2-2.x.2+2^2\right)=x^2-4-x^2-4x+4=\left(x^2-x^2\right)+\left(-4+4\right)-4x=-4x\)

d) (2x+y)(4x2-2xy+y2)-(2x-y)(4x2+2xy+y2)

= \(8x^3+y^3-\left(8x^3-y^3\right)\)

= \(8x^3+y^3-8x^3+y^3\)

= \(\left(8x^3-8x^3\right)+\left(y^3+y^3\right)\)= \(2y^3\)

4 tháng 8 2017

1a. \(\left(2-3x\right)^2=4-12x+9x^2=9x^2-12x+4\)

\(b.\left(x-4\right)\left(x+4\right)=x^2-16\)

\(c.\left(x-1\right)^2-\left(x+2\right)^2=\left(x-1+x+2\right)\left(x-1-x-2\right)=\left(2x+1\right)\left(-3\right)=-6x-3\)

2. a) \(A=x^2-14x=x^2-2.7.x+7^2-49=\left(x-7\right)^2-49\)

\(b.B=\dfrac{1}{4}x^2+x=\dfrac{1}{4}\left(x^2+4x\right)=\dfrac{1}{4} \left(x^2+2x.2+2^2-4\right)=\dfrac{1}{4}\left[\left(x+2\right)^2-4\right]=\dfrac{1}{4}\left(x+2\right)^2-1\)

c.d Tương tự