Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A nhận giá trị nguyên thì 3n+10 phải chia hết cho n+2
Ta có: 3n+10=3.(n+2)+4
\(\Rightarrow\)4 chia hết cho 3n+10
Tức là \(3n+10\in U\left(4\right)\)
Mả \(U\left(4\right)\in\left(1;2;4\right)\)
ta có bảng giá trị sau:
3n+10 | 1 | 2 | 4 |
3n | -9 | -8 | -6 |
n | -3 | -8/3 | -2 |
Lại do: n thuộc Z.
Vay n= -3 ; -2.
Lời giải không rõ lắm nhé!
Vì A là số tự nhiên nên n^2 + 3n chia hết cho 8 => n(n+3) chia hết cho 8.
Vì A là số nguyên tố nên (n^2 + 3n ; 8 ) = 1 mà n(n+3) chia hết cho 8 => n hoặc n+3 chia hết cho 8.
Khi 1 trong 2 số trên chia hết cho 8 thì số còn lại phải là snt do (n^2 + 3n ; 8 ) = 1
Mà khi 1 trong 2 số chia 8 phải có thương là 1 vì nếu lớn hơn 1 thì A không là snt.
Vậy n = 8 hoặc n = 5.
a) Để A là phân số
\(\Rightarrow n-1\ne0\)
\(\Rightarrow n\ne1\)
=> A là phân số khi \(n\ne1\)
b) Vì \(n\inℤ\)
\(\hept{\begin{cases}3n+4\inℤ\\n-1\inℤ\end{cases}}\)
mà \(A\inℤ\Leftrightarrow3n+4⋮n-1\)
\(\Rightarrow3n-3+7⋮n-1\)
\(\Rightarrow3\left(n-1\right)+7⋮n-1\)
Vì \(3\left(n-1\right)⋮n-1\)
nên \(7⋮n-1\)
\(\Rightarrow n-1\inƯ\left(7\right)\)
\(\Rightarrow n-1\in\left\{\pm1;\pm7\right\}\)
Lập bảng xét 4 trường hợp ta có :
\(n-1\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(n\) | \(2\) | \(0\) | \(8\) | \(-6\) |
Vậy \(n\in\left\{2;0;8;-6\right\}\)
a) Với A= 4 \(\Rightarrow\frac{3n+9}{n-4}=4\)
=> 3n+9=4(n-4)
=> 3n+9=4n-16
=> 3n=4n-25
=> 4n-3n=25
=> n=25
Vậy để A= 4 thì n phải bằng 25
b) Để A nguyên \(\Rightarrow\frac{3n+9}{n-4}\) nguyên
=> 3n+9 phải chia hết cho n-4
=> 3(n-4)+21 phải chia hết cho n-4
Vì 3(n-4) chia hết cho n-4 => 21 chia hết cho n-4
=> n-4 thuộc Ư(21)={21;1;7;3;-21;-1;-7;-3}
Ta có bảng sau:
n-4 | 21 | 1 | 7 | 3 | -21 | -1 | -7 | -3 |
n | 25 | 5 | 11 | 7 | -17 | 3 | -3 | 1 |
Vậy n={25;5;11;7;-17;3;-3;1}
c) Cái này mình không biết làm
\(A=\frac{3n-7}{n+2}=\frac{3.\left(n+2\right)-13}{n+2}=3-\frac{13}{n+2}\inℤ\)
\(\Rightarrow\frac{13}{n+2}\inℤ\)
Mà \(13\inℤ\Rightarrow n+2\inℤ\Rightarrow n\inℤ\)và \(n+2\inƯ\left(13\right)\)
\(\Rightarrow\left(n+2\right)\in\left\{\pm1;\pm13\right\}\)\(\Rightarrow n\in\left\{-1;-3;11;-15\right\}\)