Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+1/4-1/3).(13/6-1/4)=7/46
(x+1/4-1/3).23/12=7/46
(x+1/4-1/3)=7/46:23/12
(x+1/4-1/3)=7/46.12/23
(x+1/4-1/3)=42/529
x+1/4=42/529+1/3
x+1/4=655/1587
x=655/1587-1/4
x=1033=/6348
vậy x=1033/6348
a ) 27 11 và 81 8
Ta có :
27 11 = ( 3 3 ) 11 = 3 33
81 8 = ( 3 4 ) 8 = 3 32
Vì 3 33 > 3 32
=> 27 11 > 81 8
b ) 625 5 và 125 7
Ta có :
625 5 = ( 5 4 ) 5 = 5 20
125 7 = ( 5 3 ) 7 = 5 21
Ví 5 20 < 5 21
=> 625 5 < 125 7
c ) 5 36 và 11 24
Ta có
5 36 = ( 5 6 ) 6 = 15625 6
11 24 = ( 11 4 ) 6 = 14641 6
Vì 15625 6 < 14641 6
=> 5 36 > 1124
d ) 3 2n và 2 3n
Ta có :
3 2n = ( 3 2 ) n = 9 n
2 3n = ( 2 3 ) n = 8 n
Vì 9 n > 8 n
=> 3 2n > 2 3n
nhìn thoy đã thấy nản r`....
a/ \(3^{500}=\left(3^5\right)^{100}=243^{100};5^{300}=\left(5^3\right)^{100}=125^{100}\)
Ta thấy \(243^{100}>125^{100}\Rightarrow3^{500}>5^{300}\)
b/ \(125^5=\left(5^3\right)^5=5^{15};25^7=\left(5^2\right)^7=5^{14}\)
ta thấy \(5^{15}>5^{14}\Rightarrow125^5>25^7\)
c/ \(9^{20}=\left(3^2\right)^{20}=3^{40};27^{13}=\left(3^3\right)^{13}=3^{39}\)
Ta thấy \(3^{40}>3^{39}\Rightarrow9^{20}>27^{13}\)
...còn lại tự lm nốt nhá....
Bạn ơi ; tách từng bài ra cho dễ làm :
1.7C-C= 7^2016-7
C = ( 7^2016-7 ) :6
\(C=7+7^2+7^3+.....+7^{2016}\)
\(\Rightarrow7C=7^2+7^3+7^4+...+7^{2017}\)
\(\Rightarrow7C-C=\left(7^2+7^3+.....+7^{2017}\right)-\left(7+7^2+7^3+....+7^{2016}\right)\)
\(\Rightarrow6C=2^{2017}-7\)
\(\Rightarrow C=\frac{2^{2017}-7}{6}\)
\(a)\dfrac{3}{4}-\dfrac{-5}{2}-\dfrac{7}{-24}\)
\(=\dfrac{13}{4}-\dfrac{7}{-24}\)
\(=\dfrac{85}{24}\)
\(b)\dfrac{4}{7}+\dfrac{-5}{8}-\dfrac{3}{28}\)
\(=\dfrac{-3}{56}-\dfrac{3}{28}\)
\(=\dfrac{-9}{56}\)
\(c)\dfrac{7}{36}-\dfrac{8}{-9}+\dfrac{-2}{3}\)
\(=\dfrac{13}{12}\)\(+\dfrac{-2}{3}\)
\(=\dfrac{5}{12}\)
\(d)\dfrac{-1}{2}+\dfrac{3}{7}-\dfrac{1}{9}+\dfrac{-7}{18}+\dfrac{4}{7}\)
\(=\dfrac{-1}{14}-\dfrac{1}{9}+\dfrac{-7}{18}+\dfrac{4}{7}\)
\(=\dfrac{-23}{126}+\dfrac{-7}{18}+\dfrac{4}{7}\)
\(=\dfrac{-4}{7}+\dfrac{4}{7}\)
\(=0\)
\(e)\dfrac{2}{7}+\dfrac{-3}{8}+\dfrac{11}{7}+\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{5}{-8}\)
\(=\dfrac{-5}{56}+\dfrac{11}{7}+\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{5}{-8}\)
\(=\dfrac{83}{56}+\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{5}{-8}\)
\(=\dfrac{305}{168}+\dfrac{1}{7}+\dfrac{5}{-8}\)
\(=\dfrac{47}{24}+\dfrac{5}{-8}\)
\(=\dfrac{4}{3}\)
Bài 2 : Tính
a) \(\dfrac{3}{4}-\dfrac{-5}{2}-\dfrac{7}{-24}\)
\(=\dfrac{18}{24}-\dfrac{-60}{24}-\dfrac{-4}{24}\)
\(=\dfrac{18-\left(-60\right)-\left(-7\right)}{24}\)
\(=\dfrac{85}{24}\)
b) \(\dfrac{4}{7}+\dfrac{-5}{8}-\dfrac{3}{28}\)
\(=\dfrac{32}{56}+\dfrac{-35}{56}-\dfrac{6}{56}\)
\(=\dfrac{32+\left(-35\right)-6}{56}\)
\(=\dfrac{-9}{56}\)
c) \(\dfrac{7}{36}-\dfrac{8}{9}+\dfrac{-2}{3}\)
\(=\dfrac{7}{36}-\dfrac{32}{36}+\dfrac{-24}{36}\)
\(=\dfrac{7-32+\left(-24\right)}{36}\)
\(=\dfrac{-49}{36}\)
d) \(\dfrac{-1}{2}+\dfrac{3}{7}-\dfrac{1}{9}+\dfrac{-7}{18}+\dfrac{4}{7}\)
\(=\dfrac{-9}{18}+\dfrac{3}{7}-\dfrac{2}{18}+\dfrac{-7}{18}+\dfrac{4}{7}\)
\(=\left(\dfrac{-9}{18}+\dfrac{-7}{18}-\dfrac{2}{18}\right)+\left(\dfrac{3}{7}+\dfrac{4}{7}\right)\)
\(=\left(-1\right)+1\)
\(=0\)
e) \(\dfrac{2}{7}+\dfrac{-3}{8}+\dfrac{11}{7}+\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{5}{-8}\)
\(=\left(\dfrac{2}{7}+\dfrac{1}{7}+\dfrac{11}{7}\right)+\left(\dfrac{-3}{8}+\dfrac{-5}{8}\right)+\dfrac{1}{3}\)
\(=2+\left(-1\right)+\dfrac{1}{3}\)
\(=1+\dfrac{1}{3}\)
\(=\dfrac{4}{3}\)
a) \(\dfrac{11}{21}+\dfrac{-4}{7}=\dfrac{11}{21}+\dfrac{-12}{21}=\dfrac{-1}{21}\)
b) \(\dfrac{5}{15}+\dfrac{14}{25}-\dfrac{12}{9}+\dfrac{2}{7}+\dfrac{11}{25}=\dfrac{1}{3}+\dfrac{14}{25}-\dfrac{4}{3}+\dfrac{2}{7}+\dfrac{11}{25}\)
\(=\left(\dfrac{1}{3}-\dfrac{4}{3}\right)+\left(\dfrac{14}{25}+\dfrac{11}{25}\right)+\dfrac{2}{7}=-1+1+\dfrac{2}{7}=\dfrac{2}{7}\)
c) \(\dfrac{2}{3}+\dfrac{5}{7}-\dfrac{3}{14}=\dfrac{28}{42}+\dfrac{30}{42}-\dfrac{9}{42}=\dfrac{49}{42}=\dfrac{7}{6}\)
d) \(\dfrac{2}{5}-\dfrac{3}{7}+\dfrac{9}{45}=\dfrac{2}{5}-\dfrac{3}{7}+\dfrac{1}{5}=\dfrac{14}{35}-\dfrac{15}{35}+\dfrac{7}{35}=\dfrac{6}{35}\)
e) \(\dfrac{21}{47}+\dfrac{9}{45}+\dfrac{26}{47}+\dfrac{45}{5}=\dfrac{21}{47}+\dfrac{1}{5}+\dfrac{26}{47}+\dfrac{45}{5}=\left(\dfrac{21}{47}+\dfrac{26}{47}\right)+\left(\dfrac{1}{5}+\dfrac{45}{5}\right)\)
\(=1+\dfrac{46}{5}=\dfrac{51}{5}\)
f) \(\dfrac{15}{12}-\dfrac{18}{13}+\dfrac{5}{13}-\dfrac{3}{12}=\left(\dfrac{15}{12}-\dfrac{3}{12}\right)+\left(-\dfrac{18}{13}+\dfrac{5}{13}\right)=1+\left(-1\right)=0\)
g) \(\dfrac{-8}{18}-\dfrac{15}{27}=\dfrac{-4}{9}-\dfrac{5}{9}=\dfrac{-9}{9}=-1\)
h)\(\dfrac{3}{7}+\dfrac{-5}{2}-\dfrac{3}{5}=\dfrac{30}{70}+\dfrac{-175}{70}-\dfrac{42}{70}=\dfrac{-187}{70}\)
i) \(\left(\dfrac{11}{12}:\dfrac{33}{16}\right).\dfrac{3}{5}=\dfrac{11}{12}.\dfrac{16}{33}.\dfrac{3}{5}=\dfrac{11.16.3}{12.33.5}=\dfrac{4}{15}\)
a. Ta có : 27 ^11 = (3^3)^11= 3^33
81^8=(3^4)^8 = 3 ^32
=> 27^11>81^8
b. 625^5= (5^4)^5=5^20
125^7=(5^3)^7=5^21
=> 125^7>625^5
c. 5^36= (5^3)^12 =125^12
11^24=(11^2)^12= 121^12
=> 5^36>11^24
d. 3^2n = 9^n
2^3n= 8^n
=> 3^2n>2^3n
\(a,27^{11}\)và \(81^8\)
Ta có:
\(27^{11}=\left(3^3\right)^{11}=3^{33}\)
\(81^8=\left(3^4\right)^8=3^{32}\)
Vì \(3^{33}>3^{32}\Rightarrow27^{11}>81^8\)
\(b,625^5\)và \(125^7\)
Ta có:
\(625^5=\left(5^4\right)^5=5^{20}\)
\(125^7=\left(5^3\right)^7=5^{21}\)
Vì \(5^{20}< 5^{21}\Rightarrow625^5< 125^7\)
a: \(=\dfrac{-28}{36}+\dfrac{15}{36}-\dfrac{26}{36}=\dfrac{-39}{36}=\dfrac{-13}{12}\)
b: \(=\dfrac{11}{9}\left(\dfrac{15}{4}-\dfrac{7}{4}-\dfrac{5}{4}\right)=\dfrac{11}{9}\cdot\dfrac{3}{4}=\dfrac{11}{12}\)
c: \(=15+\dfrac{9}{7}+6+\dfrac{2}{3}-5-\dfrac{5}{9}\)
\(=16+\dfrac{88}{63}=\dfrac{1096}{63}\)
d: \(=\dfrac{5}{6}-\dfrac{1}{3}+\dfrac{2}{18}\)
\(=\dfrac{15-6+2}{18}=\dfrac{11}{18}\)
a: \(3^7\cdot27^5\cdot81^3=3^7\cdot3^{15}\cdot3^{12}=3^{34}\)
b: \(36^5:18^5=\left(\dfrac{36}{18}\right)^5=2^5=32\)
c: \(24\cdot5^2+5^2\cdot5^3=24\cdot25+25\cdot125=25\cdot149=3725\)
d: \(\dfrac{125^4}{5^8}=\dfrac{5^{12}}{5^8}=5^4=625\)
a) \(3^7.27^5.81^3\)
\(=3^7.\left(3^3\right)^5.\left(3^4\right)^3\)
\(=3^7.3^{15}.3^{12}\)
\(=3^{34}\)
b) \(36^5:18^5\)
\(=\left(\dfrac{36}{18}\right)^5\)
\(=2^5\)
c) \(24.5^5+5^2.5^3\)
\(=24.5^5+5^5\)
\(=5^5.\left(24+1\right)\)
\(=5^5.25\)
\(=5^5.5^2=5^7\)
d) \(125^4:5^8\)
\(=\left(5^3\right)^4:5^8\)
\(=5^{12}:5^8\)
\(=5^4\)