![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\frac{2}{3}x\times\frac{1}{2}=\frac{1}{10}\Rightarrow\frac{2}{3}x=\frac{1}{5}\Rightarrow x=\frac{3}{10}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(\frac{9}{6}+\frac{7}{24}=\frac{36}{24}+\frac{7}{24}=\frac{36+7}{24}=\frac{43}{24}\)
b)\(\frac{-5}{7}+\frac{8}{14}=\frac{-10}{14}+\frac{8}{14}=\frac{-10+18}{14}=\frac{8}{14}\)\(=\)\(\frac{4}{7}\)
c)\(\frac{-7}{6}+\left(-2\right)=\frac{-7}{6}+\frac{-2}{1}=\frac{-7}{6}+\frac{-12}{6}=\frac{-7+\left(-12\right)}{6}=\frac{-19}{6}\)
d)\(\frac{-50}{300}+\frac{-40}{200}=\frac{-10000}{60000}+\frac{-12000}{60000}=\frac{-10000+\left(-12000\right)}{60000}=\frac{-22000}{60000}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1)4
2) 1 phần 5
3) 110 phần 13
4)7 phần 4
5)0
nếu đúng thì tk nhé hóng ^^
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a.\frac{44.66+34.41}{3+7+11+.....+79}=\frac{2904+1394}{820}=\frac{4298}{820}=\frac{2149}{410}\)
\(b.\frac{1+2+3+...+200}{6+8+10+...+34}=\frac{20100}{300}=67\)
\(c.\frac{1.5.6+2.10.12+4.20.24+9.45.54}{1.3.5+2.6.10+4.12.20+9.27.45}=\frac{5+12+24+54}{3+6+12+27}=\frac{95}{48}\)
b) Đặt tử số của B là a = 1 + 2 + 3 + ..... + 200
mẫu số của B là b = 6 + 8 + 10 + .... + 34
a = 1 + 2 + 3 + ..... + 200
= 200.(200 + 1) : 2
= 20100
b = (34 + 6) . 15 : 2
= 300
Vậy B = 20100/300 = 67
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Tinh giá trị:
\(D=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{10}\right)\) \(\Leftrightarrow D=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{7}{8}.\frac{8}{9}.\frac{9}{10}=\frac{1}{10}\)
b/ Chứng minh:
\(E=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
- Với mọi số tự nhiên n khác không thì luôn có: \(\frac{1}{n^2}< \frac{1}{\left(n-1\right)\left(n+1\right)}=\frac{1}{2}\left(\frac{1}{n-1}-\frac{1}{n+1}\right)\) Do đó:
\(E=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}=\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{101}\right)\)\(=\frac{1}{2}\left(1-\frac{1}{101}\right)< \frac{1}{2}\) Vậy \(E< \frac{1}{2}\)
c/ Chứng minh : \(F=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}+\frac{1}{200}>\frac{7}{12}\)
\(F=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)>\frac{50}{150}+\frac{50}{200}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
Vậy: \(F>\frac{7}{12}\) .
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{7}{8}\div\left(\frac{14}{3}+\frac{14}{4}\right)+\frac{10}{14}\)
\(=\frac{7}{8}\div\left(\frac{56}{12}+\frac{52}{12}\right)+\frac{10}{14}\)
\(=\frac{7}{8}\div\frac{108}{12}+\frac{10}{14}\)
\(=\frac{7}{8}\div9+\frac{5}{7}\)
\(=\frac{7}{8}\times\frac{1}{9}+\frac{5}{7}\)
\(=\frac{7}{72}+\frac{5}{7}\)
\(=\frac{49}{504}+\frac{360}{504}\)
\(=\frac{409}{504}\)
\(\frac{30}{42}\div\left(\frac{5}{7}-\frac{5}{21}\right)+\frac{6}{8}\)
\(=\frac{6}{7}\div\left(\frac{15}{21}-\frac{5}{21}\right)+\frac{3}{4}\)
\(=\frac{6}{7}\div\frac{10}{21}+\frac{3}{4}\)
\(=\frac{6}{7}\times\frac{21}{10}+\frac{3}{4}\)
\(=\frac{126}{70}+\frac{3}{4}\)
\(=\frac{504}{280}+\frac{210}{280}\)
\(=\frac{714}{280}\)
\(\left(6-\frac{14}{15}\right).\frac{50}{38}-\frac{8}{18}\)
\(=\left(\frac{90}{15}-\frac{14}{15}\right).\frac{25}{19}-\frac{4}{9}\)
\(=\frac{76}{15}.\frac{25}{19}-\frac{4}{9}\)
\(=\frac{76.25}{15.19}-\frac{4}{9}\)
\(=\frac{19.2.2.5.5}{3.5.19}-\frac{4}{9}\)
\(=\frac{20}{3}-\frac{4}{9}\)
\(=\frac{60}{9}-\frac{4}{9}\)
\(=\frac{56}{9}\)
\(\frac{4}{6}+\frac{5}{21}.\left(\frac{4}{5}-\frac{2}{6}\right)\)
\(=\frac{2}{3}+\frac{5}{21}.\left(\frac{24}{30}-\frac{10}{30}\right)\)
\(=\frac{2}{3}+\frac{5}{21}.\frac{14}{30}\)
\(=\frac{2}{3}+\frac{70}{630}\)
\(=\frac{420}{630}+\frac{70}{630}\)
\(=\frac{490}{630}\)
\(=\frac{7}{9}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: \(\dfrac{-3}{5}x+\dfrac{-7}{4}=\dfrac{3}{10}\)
\(\Leftrightarrow\dfrac{-3}{5}x=\dfrac{3}{10}+\dfrac{7}{4}=\dfrac{41}{20}\)
\(\Leftrightarrow x=\dfrac{41}{20}:\dfrac{-3}{5}=\dfrac{41}{20}\cdot\dfrac{-5}{3}\)
hay \(x=-\dfrac{41}{12}\)
Vậy: \(x=-\dfrac{41}{12}\)
A= \(\dfrac{3}{10}\) - \(\dfrac{50}{200}\) + \(\dfrac{1}{5}\)
A = \(\dfrac{3}{10}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{5}\)
A = \(\dfrac{6}{20}\) - \(\dfrac{5}{20}\) + \(\dfrac{4}{20}\)
A = \(\dfrac{5}{20}\)
A = \(\dfrac{1}{4}\)
3/10 - 50/200 + 1/5
= 3/10 - 1/4 + 1/5
= 6/20 - 5/20 + 4/20
=5/20
= 1/4