K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2015

A=3+3^2+3^3+..........+3^99+3^100

3A=3^2+3^3+...............+3^100+3^101

=> 3A-A= (3^2+3^3+......+3^100+3^101) - (3+3^2+3^3+........+3^99+3^100)

=> 2A= 3^101 - 3

=>2A+3=3^101

=>3^n=3^101

=> n=101

tick đi để tròn 42

22 tháng 10 2015

3A=3+32+33+...+3100+3101

3A-A=3101-3

A=3101-3:2

 

7 tháng 5 2016

1. Ta có:

3A = 3^2 + 3^3+3^4+...+3^101

=> 3A-A= (3^2+3^3+3^4+...+3^101) - (3+3^2+3^3+...+3^100)

<=> 2A= 3^101-3

=> 2A +3 = 3^101

Mà 2A+3=3^n

=> 3^101 = 3^n => n=101

7 tháng 5 2016

2. M=3+32+33+34+...+3100

=>3M=32+33+34+35+...+3101

=>3M-M= 3101-3 ( chỗ này bạn tự làm được nhé) 

=>   M=\(\frac{3^{101}-3}{2}\)

a) Ta co : 3101=(34)25 .3=8125.3

Bạn học đồng dư thức rồi thì xem:

  Vì 81 đồng dư với 1 (mod 8) => 8125 đồng dư với 1 (mod 8)=> 8125.3 đồng dư với 1.3=3(mod 8)

=> 8125.3-3 đồng dư với 3-3=0 (mod 8)=> 8125.3-3 chia hết cho 8

=>\(\frac{81^{25}.3-3}{2}\)chia hết cho 4=> M chia hết cho 4 (1)

Ma M=3101-3 chia hết cho 3                              (2)

Từ (1) và (2) => M chia hết cho 12

b)\(2\left(\frac{3^{101}-3}{2}\right)+3=3^n\)

=> 3101-3 +3 =3n

=> 3101=3n=> n = 101

     

                                   

21 tháng 9 2017

Ta có : A = 3 + 32 + 33 + ..... + 3100 

=> 3A = 32 + 33 + 34 + ..... + 3101 

=> 3A - A = 3101 - 3 

=> 2A = 3101 - 3 

=> 2A + 3 = 3101

=> x = 101

Vậy x = 101 . 

21 tháng 9 2017

\(A=3+3^2+3^3+........+3^{100}\)

\(3A=3^2+3^3+.......+3^{101}\)

\(3A-A=\left(3^2+3^3+........+3^{101}\right)-\left(3+3^2+3^3+........+3^{100}\right)\)

\(3A-A=3^2+3^3+........+3^{101}-3-3^2-3^3-........-3^{100}\)

=> \(2A=3^{101}-3\)

Sau đó làm tiếp

24 tháng 9 2015

A = 3 + 32 + 33 + ... + 3100

3A = 32 + 33 + 34 + ... + 3101

3A - A = 3101 + 3100 - 3100 + 399 - 399 + ... + 34 - 34 + 33 - 33 + 32 - 32 - 3

(3 - 1)A = 3101 - 3

2A = 3101 - 3

\(\Rightarrow A=\frac{3^{101}-3}{2}\)

Ta có:

2A + 3 = 3n

2 . \(\frac{3^{101}-3}{2}\) + 3 = 3n

3101 - 3 + 3        = 3n

3101                   = 3n

Vậy n = 101

15 tháng 11 2015

A = \(3+3^2+3^3+...+\)\(3^{100}\)       (1)

3A = \(3^2+3^3+3^4+...+3^{101}\)    (2)

 lấy (2) trừ (1) ta được : 

2A= \(3^{101}-3\)

 ta có : 2A+3 = \(3^n\)

         => \(3^{101}-3+3=3^n\)

               \(3^{101}=3^n\)

 => \(n=101\)

1 tháng 10 2015

trả lời câu c nha

A=3+3^2 +3^+...+3^99+3^100

3A=3^2+3^3+...+3^100+3^101

3A-A=2A=3^101-3

Do đó 2A+3=3^101.Theo đề bài,2A+3=3^x

Vậy x=101

 

^ là mụ nha

 

28 tháng 12 2021

a,A=3+32+33+34+...+31003A=32+33+34+35+31013A−A=2A=3101−3⇒2A+3=3101=34.25+1⇒n=25

28 tháng 12 2021
Có ai biết câu b ko Ơ ^ Ơ
21 tháng 8 2016

3A = 3^2 + 3^3 + 3^4 + ... + 3^101

3A - A = (3^2 + 3^3 + 3^4 + ... + 3^101) - (3 + 3^2 + 3^3 + ... + 3^101)

2A = 3^101 - 3

2A + 3 = 3^101 = 3^n

=> n = 101