Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1+ 3 + 32 + 33 + .... + 348 + 349
3S = 3 + 32 + 33 + 34 + ...+ 349 + 350
2S = 3 + 32 + 33 + 34 + ....349 + 350 - ( 1 + 3 + 32 + 33 +....... + 348 + 3 49 )
2S = 350 - 1
=> S = ( 350 - 1 ) : 2
S = ( 925 - 1 ) : 2
nhận xét thấy 9 lũy thừa chỉ có 2 chữ số tận cùng là 1 và 9 với lũy thừa chẵn là 1 và lẻ là 9
vậy 925 là lũy thừa lẻ nên có tận cùng là : 9
ta có : 9 - 1 = 8 và 8 : 2 = 4 => tận cùng của S là : 4
a)
\(A=\frac{6^3+3.6^3+3^3}{-13}=\frac{3^3.2^3+3^3.2^2+3^3}{-13}=\frac{3^3\left(8+4+1\right)}{-13}=\frac{27.13}{-13}=-27\)
b)
A=1+5+52+53+...+550
5A=5+52+53+...551
5A-A=(5+52+53+...+551)-(1+5+52+...+550)
4A=551-1
A=\(\frac{5^{51}-1}{4}\)
c)
A=2100-299+298-...+22-2
2A=2101-2100+299-...+23-22
2A+A=(2101-2100+...+23-22)+(2100-299+...+22-2)
3A=2101-2
A=\(\frac{2^{101}-2}{3}\)
b.
\(A=1+5+5^2+5^3+...+5^{49}+5^{50}\)
\(5A=5+5^2+5^3+...+5^{50}+5^{51}\)
\(5A-A=\left(5+5^2+5^3+...+5^{50}+5^{51}\right)-\left(1+5+5^2+..+5^{50}\right)\)
\(4A=5^{51}-1\)
\(A=\frac{5^{51}-1}{4}\)
a) S = 1 + 3 + 32 +...+ 348 + 349
=> 3S = 3 + 32 + 33 +...+ 348 + 349 + 350
=> 3S - S = 350 - 1
=> S = \(\frac{3^{50}-1}{2}\)
Vậy S = \(\frac{3^{50}-1}{2}\)
b) Câu này hơi khó!
\(A=2+2^2+2^3+........+2^{49}+2^{50}\)
\(=2.\left(1+2\right)+2^3+\left(1+2\right)+........2^{59}+\left(1+2\right)\)
\(=2.3+2^3.3+........+2^{59}.3\)
\(=3.\left(2+2^3+.......+2^{59}\right)\) luôn chia hết cho 3
Vay \(A=2+2^2+2^3+........+2^{49}+2^{50}\) chia hết cho 3
Đặt \(A=5+5^3+5^5+....+5^{47}+5^{49}\)
\(\Rightarrow5^2A=5^3+5^5+5^7+.....+5^{49}+5^{51}\)
\(\Rightarrow5^2A-A=\left(5^3+5^5+5^7+....+5^{49}+5^{51}\right)-\left(3+3^3+3^5+....+5^{47}+5^{49}\right)\)
\(\Rightarrow24A=5^{51}-5\)
\(\Rightarrow A=\dfrac{5^{51}-5}{24}\)
Vậy ............................................................
1)a) \(\left(3x-7\right)^5=32\Rightarrow\left(3x-7\right)^5=2^5\)
\(\Rightarrow3x-7=2\Rightarrow3x=9\Rightarrow x=3\)
Vậy \(x=3\)
b) \(\left(4x-1\right)^3=-27.125\)
\(\Rightarrow\left(4x-1\right)^3=-3^3.5^3=-15^3\)
\(\Rightarrow4x-1=-15\Rightarrow4x=-14\Rightarrow x=-3,5\)
Vậy \(x=-3,5\)
c) \(3^{4x+4}=81^{x+3}\Rightarrow3^{4x+4}=3^{4x+12}\)
\(\Rightarrow4x+4=4x+12\)
\(\Rightarrow4x=4x+8\)
\(\Rightarrow x\in\varnothing\)
d) \(\left(x-5\right)^7=\left(x-5\right)^9\)
\(\Rightarrow\left(x-5\right)^7-\left(x-5\right)^9=0\)
\(\Rightarrow\left(x-5\right)^7.\left[1-\left(x-5\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-5\right)^7=0\\1-\left(x-5\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\\left(x-5\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x-5=-1\\x-5=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=4\\x=6\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=5\\x=4\\x=6\end{matrix}\right.\)