Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+11}{12}+\frac{x+11}{13}+\frac{x+11}{14}=\frac{x+11}{15}+\frac{x+11}{16}\)
\(\Rightarrow\frac{x+11}{12}+\frac{x+11}{13}+\frac{x+11}{14}-\frac{x+11}{15}-\frac{x+11}{16}=0\)
\(\Rightarrow\left(x+11\right)\left(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}-\frac{1}{15}-\frac{1}{16}\right)=0\)
Mà \(\left(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}-\frac{1}{15}-\frac{1}{16}\right)\ne0\)
\(\Rightarrow x+11=0\Rightarrow x=-11\)
Ta có: ĐK \(x\ne-1\)
\(A=\frac{x^2+2x}{x+1}=\frac{x^2+2x+1-1}{x+1}=\frac{\left(x+1\right)^2-1}{x+1}=x+1-\frac{1}{x+1}\)
Để A là số nguyên thì ta có \(x+1\inƯ\left(1\right)\)
Ta có bảng sau:
x+1 | 1 | -1 |
x | 0 | -2 |
Vậy \(x\in\left\{0;-2\right\}\)
a) \(x^2+2x>0\)
\(\Leftrightarrow x\left(x+2\right)>0\)
\(\Leftrightarrow\begin{cases}x>0\\x+2>0\end{cases}\) hoặc \(\begin{cases}x< 0\\x+2< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>0\\x>-2\end{cases}\) hoặc \(\begin{cases}x< 0\\x< -2\end{cases}\)
\(\Leftrightarrow x>0\) hoặc \(x< -2\)
b ) \(\left(3-x\right).\left(x-5\right)>0\)
\(\Leftrightarrow\begin{cases}3-x>0\\x-5>0\end{cases}\) hoặc \(\begin{cases}3-x< 0\\x-5< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x< 3\\x>5\end{cases}\) ( vô nghiệm ) hoặc \(\begin{cases}x>3\\x< 5\end{cases}\)
\(\Leftrightarrow3< x< 5\)
a)Để x2+2x dương
=>x2+2x>0
=>x(x+2)>0 suy ra x và x+2 cùng dấu
Xét \(\begin{cases}x>0\\x+2>0\end{cases}\Rightarrow\)\(\begin{cases}x>0\\x>-2\end{cases}\Rightarrow-2< x< 0\)
Xét \(\begin{cases}x< 0\\x+2< 0\end{cases}\Rightarrow\)\(\begin{cases}x< 0\\x< -2\end{cases}\)\(\Rightarrow-2< x< 0\)
Vậy ta mọi x thỏa mãn -2<x<0 đều đúng.
b)Để (3-x)(x-5) dương
=>(3-x)(x-5) >0
=>3-x và x-5 cùng dấu
Xét \(\begin{cases}3-x>0\\x-5>0\end{cases}\)\(\Rightarrow\begin{cases}x< 3\\x>5\end{cases}\)\(\Rightarrow5< x< 3\)(loại)
Xét \(\begin{cases}3-x< 0\\x-5< 0\end{cases}\)\(\Rightarrow\begin{cases}x>3\\x< 5\end{cases}\)
\(\Rightarrow3< x< 5\)(
Vậy với mọi giá trị của x thỏa mãn 3<x<5 đều đúng
\(A=\frac{3x-1}{x-1}=\frac{3\left(x-1\right)+2}{x-1}=3+\frac{2}{x-1}\)
\(B=\frac{2x^2+x-1}{x+2}=\frac{\left(x+2\right)\left(2x-3\right)+5}{x+2}=2x-3+\frac{5}{x+2}\)
Để A,B đều là số nguyên thì \(x-1\in\left\{1;2;-1;-2\right\}\) và \(x+2\in\left\{1;5;-1;-5\right\}\)
Bạn tự làm nốt
ĐKXĐ: \(x\ne\pm3\)
a
Khi x = 1:
\(A=\dfrac{3.1+2}{1-3}=\dfrac{5}{-2}=-2,5\)
Khi x = 2:
\(A=\dfrac{3.2+2}{2-3}=-8\)
Khi x = \(\dfrac{5}{2}:\)
\(A=\dfrac{3.2,5+2}{2,5-3}=\dfrac{9,5}{-0,5}=-19\)
b
Để A nguyên => \(\dfrac{3x+2}{x-3}\) nguyên
\(\Leftrightarrow3x+2⋮\left(x-3\right)\\3\left(x-3\right)+11⋮\left(x-3\right) \)
Vì \(3\left(x-3\right)⋮\left(x-3\right)\) nên \(11⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\\ \Rightarrow x\left\{4;2;-8;14\right\}\)
c
Để B nguyên => \(\dfrac{x^2+3x-7}{x+3}\) nguyên
\(\Rightarrow x\left(x+3\right)-7⋮\left(x+3\right)\)
\(\Rightarrow-7⋮\left(x+3\right)\\ \Rightarrow x+3\inƯ\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x=\left\{-4;-11;-2;4\right\}\)
d
\(\left\{{}\begin{matrix}A.nguyên.\Leftrightarrow x=\left\{-8;2;4;14\right\}\\B.nguyên\Leftrightarrow x=\left\{-11;-4;-2;4\right\}\end{matrix}\right.\)
=> Để A, B cùng là số nguyên thì x = 4.
Khai triển :
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Ta có :
A nguyên
<=> 1+\(\frac{4}{\sqrt{x}-3}\) nguyên
<=> \(\frac{4}{\sqrt{x}-3}\) nguyên
<=> \(\sqrt{x}-3\inƯ_{\left(4\right)}\)
<=> \(\sqrt{x}-3\in\left\{1;2;4;-1;-2;-4\right\}\)
<=> \(\sqrt{x}\in\left\{4;5;7;2;1;-1\right\}\)
Mà \(\sqrt{x}\ge0\forall x\)
=> \(\sqrt{x}\in\left\{4;5;7;2;1\right\}\)
=> \(x\in\left\{16;25;49;4;1\right\}\)
Vậy \(x\in\left\{16;25;49;4;1\right\}\)
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=\frac{\sqrt{x}-3}{\sqrt{x}-3}+\frac{4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\in Z\)
\(\Rightarrow4⋮\sqrt{x}-3\)
\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
giúp mình với tối nay mình cần