Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)(2x-3)2=16
=>2x-3=4 hoặc 2x-3=-4
<=>2x=7 hoặc 2x=-1
<=>x=7/2 hoặc x=-1/2
b)(3x-2)5=243=35
=>3x-2=3
=>3x=5
=>x=5/3
c)(7x+2)-1=52
<=>\(\frac{1}{7x+2}=25\)
<=>25(7x+2)=1
<=>175x+50=1
<=>175x=-49
<=>x=-49:175
<=>x=-7/25
d)(x-3/4)4=81=34=(-3)4
=>x-3/4=3 hoặc x-3/4=-3
<=>x=3+3/4 hoặc x=-3+3/4
<=>x=15/4 hoặc x=-9/4
b) \(3^{x+1}=9^x\)
\(3^{x+1}=\left(3^2\right)^x\) c)
\(3^{x+1}=3^{2x}\)
\(\Rightarrow x+1=2x\)
\(1=2x-x\)
\(1=x\)
Vậy x=1
b) \(3^{x+1}=9^x=3^{2x}\)
\(\Rightarrow x+1=2x\Leftrightarrow x=1\)
c) \(2^{3x+2}=4^x+5\Leftrightarrow4^{2x+1}=4^{x+5}\)
\(\Rightarrow2x+1=x+5\)\(\Rightarrow x=4\)
d) \(3^{2x-1}=243=3^5\)
\(\Rightarrow2x-1=5\Rightarrow x=3\)
1/
a/ Đặt f (x) = x2 - 3
Khi f (x) = 0
=> \(x^2-3=0\)
=> \(x^2=3\)
=> \(x=\sqrt{3}\)
Vậy \(\sqrt{3}\)là nghiệm của đa thức x2 - 3.
b/ Đặt g (x) = x2 + 2
Khi g (x) = 0
=> \(x^2+2=0\)
=> \(x^2=-2\)
=> \(x\in\varnothing\)
Vậy x2 + 2 vô nghiệm.
c/ Đặt P (x) = x2 + (x2 + 3)
Khi P (x) = 0
=> \(x^2+\left(x^2+3\right)=0\)
=> \(\hept{\begin{cases}x^2=0\\x^2+3=0\end{cases}}\)=> \(\hept{\begin{cases}x=0\\x=\sqrt{3}\end{cases}}\)(loại)
Vậy x2 + (x2 + 3) vô nghiệm.
d/ Đặt \(Q\left(x\right)=2x^2-\left(1+2x^2\right)+1\)
Khi Q (x) = 0
=> \(2x^2-\left(1+2x^2\right)+1=0\)
=> \(2x^2-\left(1+2x^2\right)=-1\)
=> \(2x^2-1-2x^2=-1\)
=> -1 = -1
Vậy đa thức \(2x^2-\left(1+2x^2\right)+1\)có vô số nghiệm.
e/ Đặt \(h\left(x\right)=\left(2x-1\right)^2-16\)
Khi h (x) = 0
=> \(\left(2x-1\right)^2-16=0\)
=> \(\left(2x-1\right)^2=16\)
=> \(2x-1=4\)
=> 2x = 5
=> \(x=\frac{5}{2}\)
Vậy đa thức \(\left(2x-1\right)^2-16\)có nghiệm là \(\frac{5}{2}\).
b) \(\left(3x-2\right)^5=-243\)
\(\Rightarrow\left(3x-2\right)^5=\left(-3\right)^5\)
\(\Rightarrow3x-2=-3\Rightarrow x=\dfrac{-1}{3}\)
c) Vì \(\left(2x-5\right)^{2000}\ge0\forall x;\left(3y+4\right)^{2002}\ge0\forall y\)
\(\Rightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\ge0\forall x,y\)
Mà theo bài ra \(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\le0\)
\(\Rightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}=0\)
\(\Rightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right........\)
a) \(\left(3x-2\right)^5=-243\)
\(\left(3x-2\right)^5=\left(-3\right)^5\)
\(3x-2=-3\)
\(3x=-3+2\)
\(3x=-1\)
\(x=-1:3\)
\(x=\dfrac{-1}{3}\)
a)\(\left(x-\frac{5}{3}\right)^2=\frac{49}{16}\)
\(\left(x-\frac{5}{3}\right)^2=\left(\frac{7}{4}\right)^2=\left(-\frac{7}{4}\right)^2\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-\frac{5}{3}=\frac{7}{4}\\x-\frac{5}{3}=-\frac{7}{4}\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{41}{12}\\x=-\frac{1}{12}\end{array}\right.\)
Vậy \(x=\frac{41}{12}=-\frac{1}{12}\)
b)2x29=3x35
\(\Rightarrow\frac{x^{29}}{3}=\frac{x^{35}}{2}\)(thiều trường hợp)
a) Ta có: \(A\left(x\right)=2x^5-3x^3+7x-6x^4+2x^3+2\)
\(=2x^5-6x^4-x^3+7x+2\)
Ta có: \(B\left(x\right)=x^5-3x^3+7x-6x^2+x^5+2x^2\)
\(=2x^5-3x^3-4x^2+7x\)
b) Ta có: \(A\left(x\right)-B\left(x\right)\)
\(=2x^5-6x^4-x^3+7x+2-\left(2x^5-3x^3-4x^2+7x\right)\)
\(=2x^5-6x^4-x^3+7x+2-2x^5+3x^3+4x^2-7x\)
\(=-6x^4+2x^3+4x^2+2\)
Ta có: \(A\left(x\right)+B\left(x\right)\)
\(=2x^5-6x^4-x^3+7x+2+2x^5-3x^3-4x^2+7x\)
\(=4x^5-6x^4-4x^3-4x^2+14x+2\)
c) Ta có: C(x)+2A(x)=B(x)
\(\Leftrightarrow C\left(x\right)=B\left(x\right)-2\cdot A\left(x\right)\)
\(\Leftrightarrow C\left(x\right)=2x^5-3x^3-4x^2+7x-2\cdot\left(2x^5-6x^4-x^3-7x+2\right)\)
\(\Leftrightarrow C\left(x\right)=2x^5-3x^3-4x^2+7x-4x^5+12x^4+2x^3+14x-4\)
\(\Leftrightarrow C\left(x\right)=-2x^5+12x^4-x^3-4x^2+21x-4\)
a, \(M\left(x\right)=\left(5x^3-7x^2+x+7\right)-\left(7x^3-7x^2+2x+5\right)+\left(2x^3+4x+1\right)\)
\(=5x^3-7x^2+x+7-7x^3+7x^2-2x-5+2x^3+4x+1\)
\(=3x+3\)
b, Bậc của M(x) là 1
\(3x+3=0\Leftrightarrow3x=-3\Leftrightarrow x=-1\)
Nghiệm của M(x) = -1
a) (2x - 3)2 = 16
=> (2x - 3)2 = 42
=> 2x - 3 = \(\pm\) 4
TH1: 2x - 3 = 4
=> 2x = 4 + 3
=> 2x = 7
=> x = \(\dfrac{7}{2}\)
TH2: 2x - 3 = -4
=> 2x = -4 + 3
=> 2x = -1
=> x = \(\dfrac{-1}{2}\)
Vậy x= \(\dfrac{7}{2}\) ; x = \(\dfrac{-1}{2}\)
b) (7x + 2)-1 =3-2
=> \(\dfrac{1}{7x+2}\) = \(\dfrac{1}{9}\)
=> 7x + 2 = 9
=> 7x = 9 - 2
=> 7x = 7
=> x = 1