K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2020

a) \(\left(2x-\frac{1}{2}\right)^2=4x^2-2x+\frac{1}{4}\)

b) \(\left(x-\frac{3}{2}\right)^2=x^2-3x+\frac{9}{4}\)

c) \(\left(x+4\right)^3=x^3+12x^2+48x+64\)

d) \(\left(2x-5\right)^3=8x^3-60x^2+150x-125\)

15 tháng 8 2020

Tách ra hả bạn -.-

a) ( 2x - 1/2 )2 = 4x2 - 2x + 1/4

b) ( x - 3/2 )2 = x2 - 3x + 9/4

c) ( x + 4 )3 = x3 + 12x2 + 48x + 64

d) ( 2x - 5 )3 = 8x3 - 60x2 + 150x - 125

14 tháng 7 2020

giúp mk vsssss

hơi dài, thôi chăm chỉ tí có sao :v =))

\(A=-x^3\left(3x-1\right)-x\left(1+3x^4\right)-x^2\left(x^2-x-2\right)\)

\(=-3x^4+x^3-x-3x^5-x^4+x^3+2x^2\)

\(=-4x^4+2x^3-x-3x^5+2x^2\)

\(B=-x^2\left(2x^2-2x-4\right)-2x\left(2-4x^4\right)-2x^3\left(2x-2\right)\)

\(=-2x^3+2x^3+4x^2-4x+8x^5-4x^4+4x^3\)

\(=4x^2-4x+8x^5-4x^4+4x^3\)

Ta có : \(A-B=-4x^4+2x^3-x-3x^5+2x^2-4x^2+4x-8x^5+4x^4-4x^3\)

\(=-2x^3+3x-11x^5-2x^2\)

Tương tự bn nhé, mk hơi bị đao phần đa thức khi qua kì thi nên hơi bị chậc lẫn một xíu =(( 

28 tháng 8 2020

Ít thôi -..-

a) ( 3x + 2 )( 2x + 9 )  - ( x + 3 )( 6x + 1 ) = ( x + 1 )2 - ( x + 2 )( x - 2 )

<=> 6x2 + 31x + 18 - ( 6x2 + 19x + 3 ) = x2 + 2x + 1 - ( x2 - 4 )

<=> 6x2 + 31x + 18 - 6x2 - 19x - 3 = x2 + 2x + 1 - x2 + 4

<=> 12x + 15 = 2x + 5

<=> 12x - 2x = 5 - 15

<=> 10x = -10

<=> x = -1

b) ( 2x + 3 )( x - 4 ) + ( x - 5 )( x - 2 ) = ( 3x - 5 )( x - 4 )

<=> 2x2 - 5x - 12 + x2 - 7x + 10 = 3x2 - 17x + 20

<=> 3x2 - 12x - 2 = 3x2 - 17x + 20

<=> 3x2 - 12x - 3x2 + 17x = 20 + 2

<=> 5x = 22

<=> x = 22/5

c) ( x + 2 )3 - ( x - 2 )3 - 12x( x - 1 ) = -8

<=> x3 + 6x2 + 12x + 8 - ( x3 - 6x2 + 12x - 8 ) - 12x2 + 12x = -8

<=>  x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8

<=> 12x + 16 = -8

<=> 12x = -24

<=> x = -2

d) ( 3x - 1 )2 - 5( x + 1 ) + 6x - 3.2x + 1 - ( x - 1 )2 = 16

<=> 9x2 - 6x + 1 - 5x - 5 + 6x - 6x + 1 - ( x2 - 2x + 1 ) = 16

<=> 9x2 - 11x - 3 - x2 + 2x - 1 = 16

<=> 8x2 - 9x - 4 = 16

<=> 8x2 - 9x - 4 - 16 = 0

<=> 8x2 - 9x - 20 = 0

( Đến đây bạn có hai sự lựa chọn : 1 là vô nghiệm

                                                         2 là nghiệm vô tỉ =) )

28 tháng 8 2020

a) (3x + 2)(2x + 9) - (x + 3)(6x + 1) = (x + 1)2 - (x + 2)(x - 2)

=> 3x(2x + 9) + 2(2x + 9) - x(6x + 1) - 3(6x + 1) = x2 + 2x + 1 - x(x - 2) - 2(x - 2)

=> 6x2 + 27x + 4x + 18 - 6x2 - x - 18x - 3 = x2 + 2x + 1 - x2 + 2x - 2x + 4

=> (6x2 - 6x2) + (27x + 4x - x - 18x) + (18 - 3) = (x2 - x2) + (2x + 2x - 2x) + (1 + 4)

=> 12x + 15 = 2x + 5

=> 12x + 15  - 2x - 5 = 0

=> 10x + 10 = 0

=> 10x = -10 => x = -1

b) (2x + 3)(x - 4) + (x - 5)(x - 2) = (3x - 5)(x - 4)

=> 2x(x - 4) + 3(x - 4) + x(x - 2) - 5(x - 2) = 3x(x - 4) - 5(x - 4)

=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 = 3x2 - 12x - 5x + 20

=> (2x2 + x2) + (-8x + 3x - 2x - 5x) + (-12 + 10) = 3x2 - 17x + 20

=> 3x2 - 12x - 2 = 3x2 - 17x + 20

=> 3x2 - 12x - 2 - 3x2 + 17x - 20 = 0

=> (3x2 - 3x2) + (-12x + 17x) + (-2 - 20) = 0

=> 5x - 22 = 0

=> 5x = 22 => x = 22/5

c) (x + 2)3 - (x - 2)3 - 12x(x - 1) = -8

=> x3 + 6x2 + 12x + 8 - (x3  - 6x2 + 12x - 8) - 12x2 + 12x = -8

=> x3 + 6x2 + 12x + 8 -x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8

=> (x3 - x3) + (6x2 + 6x2 - 12x2) + (12x - 12x + 12x) + (8 + 8) = -8

=> 12x + 16 = -8

=> 12x = -24

=> x = -2

Còn bài cuối làm nốt

2 tháng 8 2019

Mọi người giúp em thêm bài 5abc, 8c với ạ!

a) Ta có: \(x^2-3x+2=0\)

\(\Leftrightarrow x^2-x-2x+2=0\)

\(\Leftrightarrow\left(x^2-x\right)-\left(2x-2\right)=0\)

\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy: \(x\in\left\{1;2\right\}\)

b) Ta có: \(-x^2+5x-6=0\)

\(\Leftrightarrow-\left(x^2-5x+6\right)=0\)

\(\Leftrightarrow-\left(x^2-2x-3x+6\right)=0\)

\(\Leftrightarrow-\left[\left(x^2-2x\right)-\left(3x-6\right)\right]=0\)

\(\Leftrightarrow-\left[x\left(x-2\right)-3\left(x-2\right)\right]=0\)

\(\Leftrightarrow-\left[\left(x-2\right)\left(x-3\right)\right]=0\)

\(\Leftrightarrow-\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Vậy: x∈{2;3}

c) Ta có: \(4x^2-12x+5=0\)

\(\Leftrightarrow4x^2-10x-2x+5=0\)

⇔(4x2-10x)-(2x-5)=0

\(\Leftrightarrow2x\left(2x-5\right)-\left(2x-5\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{1}{2};\frac{5}{2}\right\}\)

d) Ta có: \(2x^2+5x+3=0\)

\(\Leftrightarrow2x^2+2x+3x+3=0\)

\(\Leftrightarrow\left(2x^2+2x\right)+\left(3x+3\right)=0\)

\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x+3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\frac{3}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{-1;\frac{-3}{2}\right\}\)

e) Ta có: \(x^3+2x^2-x-2=0\)

\(\Leftrightarrow\left(x^3+2x^2\right)-\left(x+2\right)=0\)

\(\Leftrightarrow x^2\left(x+2\right)-\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-1=0\\x+1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\\x=-1\end{matrix}\right.\)

Vậy: \(x\in\left\{-2;1;-1\right\}\)

g) Ta có: \(\left(3x-1\right)^2-5\left(2x+1\right)^2+\left(6x-3\right)\left(2x+1\right)=\left(x-1\right)^2\)

\(\Leftrightarrow9x^2-6x+1-20x^2-20x-5+12x^2-3-x^2+2x-1=0\)

\(\Leftrightarrow-24x-8=0\)

\(\Leftrightarrow-8\left(3x+1\right)=0\)

⇔3x+1=0

\(\Leftrightarrow3x=-1\)

\(\Leftrightarrow x=-\frac{1}{3}\)

Vậy: \(x=-\frac{1}{3}\)

22 tháng 1 2020

h) \(2x^3-7x^2+7x-2=0\)

\(\Leftrightarrow2x^3-4x^2-3x^2+6x+x-2=0\)

\(\Leftrightarrow2x^2\left(x-2\right)-3x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^2-3x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^2-2x-x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[2x\left(x-1\right)-\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy S = {2; 1; \(\frac{1}{2}\)}

i) \(x^4+2x^3+5x^2+4x-12=0\)

\(\Leftrightarrow x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12=0\)

\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2+x^2+2x+6x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{23}{4}\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\\left(x+\frac{1}{2}\right)^2=\frac{-23}{4}\left(loai\right)\end{matrix}\right.\)

Vậy S = {1;-2}

18 tháng 12 2016

a) \(2x\left(x-5\right)-x\left(3+2x\right)=26\)

\(\Leftrightarrow2x^2-10x-3x-2x^2=26\)

\(\Leftrightarrow-13x=26\Leftrightarrow x=-2\)

b) \(5x\left(x-1\right)=x-1\)

\(\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=\frac{1}{5}\end{array}\right.\)

c) \(2\left(x+5\right)-x^2-5x=0\)

\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-5\\x=2\end{array}\right.\)

d) \(\left(2x-3\right)^2-\left(x+5\right)^2=0\)

\(\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)

\(\Leftrightarrow\left(x-8\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=8\\x=-\frac{2}{3}\end{array}\right.\)

e) \(3x^3-48x=0\)

\(\Leftrightarrow3x\left(x^2-16\right)=0\)

\(\Leftrightarrow3x\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=4\\x=-4\end{array}\right.\)

f) \(x^3+x^2-4x=4\)

\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=2\\x=-2\end{array}\right.\)

18 tháng 12 2016

c.ơn bạn nhiều

25 tháng 9 2020

a, 5x(x-2) + (2-x)=0
⇔5x(x-2) - (x-2) =0
⇔(x-2)(5x-1)=0
\(\left[{}\begin{matrix}x-2=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{5}\end{matrix}\right.\)
Vậy....
c, (x3 - x2) - 4x2 + 8x -4 =0
⇔x3 - x2 -4x2 + 8x - 4=0
⇔x2(x-1) - 4x(x-1) +4(x-1) =0
⇔(x-1) (x-2)2=0
\(\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy...
Phần b cậu có chép sai đề không?

25 tháng 9 2020

.chỗ đó là giải phương trình hay PTĐTTNT vậy?

2 tháng 10 2020

a) (2x2 - x) + 4x - 2 = 0

x(2x - 1) + 2(2x - 1) = 0

(2x - 1)(x + 2) = 0

2x - 1 = 0 hoặc x + 2 = 0

* 2x - 1 = 0

2x = 1

x = \(\frac{1}{2}\)

* x + 2 = 0

x = -2

Vậy x = -2; x = \(\frac{1}{2}\)

b) x2 - 6x + 8 = 0

x2 - 2x - 4x + 8 = 0

(x2 - 2x) + (-4x + 8) = 0

x(x - 2) - 4(x - 2) = 0

(x - 2)(x - 4) = 0

x - 2 = 0 hoặc x - 4 = 0

* x - 2 = 0

x = 2

* x - 4 = 0

x = 4

Vậy x = 2; x = 4

c) x4 - 8x2 - 9 = 0

x4 + x2 - 9x2 - 9 = 0

(x4 - 9x2) + (x2 - 9) = 0

x2(x2 - 9) + (x2 - 9) = 0

(x2 - 9)(x2 + 1) = 0

x2 - 9 = 0 (vì x2 + 1 > 0 với mọi x)

x2 = 9

x = 3 hoặc x = -3

Vậy x = 3; x = -3

5 tháng 10 2019

A = 4x - x2 + 3

A = -x2 + 4x + 3

A = - (x2 - 4x - 3)

A = - (x - 2)2 + 7 lớn hơn hoặc bằng 7.

Dấu "=" xảy ra khi x - 2 = 0 => x = 2

Vậy...

5 tháng 10 2019

\(A=4x-x^2+3=-\left(x^2-4x-3\right)\)

\(=-\left(x^2-4x+4-7\right)\)

\(=-\left[\left(x-2\right)^2-7\right]\)

\(=-\left(x-2\right)^2+7\le7\)

Vậy \(A_{max}=7\Leftrightarrow x-2=0\Leftrightarrow x=2\)

\(B=x-x^2=-\left(x^2-x\right)\)

\(=-\left(x^2-x+\frac{1}{4}-\frac{1}{4}\right)\)

\(=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)

\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Vậy \(B_{max}=\frac{1}{4}\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)