Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2a) với P=2 thì P+10=12
\(\Rightarrow\)p+10 là h/s( loại)
Với P=3 thì P+10=13; P+38=41
\(\Rightarrow\)tat cả đều là n/t
Với P>3 cơ 3p+1 hoặc 3k+2
+ Nếu P=3p+1 thì P+38=3p+1+39=3p+39\(⋮\)
Vậy P=3p+1 là không thỏa mãn
+ Nếu P= 3k+2 thì P+10=3k+2+10=3k+12\(⋮\)3
Vậy P=3k+2 là không thỏa mãn
Vậy P=3
b) với p=2 thì P+2=4
\(\Rightarrow\)p+2 là h/s ( loại)
Với P=3 thì p+6=9
\(\Rightarrow\)p+6 là h/s ( loại)
Với P=5 thì P+2=7; P+6=11; P+14=19; P+18=23
\(\Rightarrow\)tat cả đều là n/t
Với P>5 có 5p+1,5n+2,5k+3,5t+4
Với P=5p+1 thì P+14=5p+1+14=5p+15\(⋮\)5
Với P=5n+2 thì P+18=5n+2+18=5n+20\(⋮\)5
Với P=5k+3 thì P+2=5k+3+2=5k+5\(⋮\)5
Với P=5t+4 thì P+6=5t+4+6=5t+10\(⋮\)5
Vậy P=5
Vì I là rung điểm của OA
=>\(IO=IA=\frac{OA}{2}=1,5\)
Vì :OA<OB(3cm<5cm)
=>OA+AB=OB
=>AB=OB-OA=5cm-3cm=2cm
mà K là trung điểm của AB
=>\(KA=KB=\frac{AB}{2}=1\)
Ta có :
IK=AK+AI=1,5cm+1cm= 2,5cm
Vậy IK=2,5 cm
Em k tính đc những phương pháp giao hoán, kết hợp,v.v.. thì làm kiểu đơn giản bình thường thôi! K cần bắt buộc đâu! Bài dễ mà!
D=32×92×243+18×243×324+723×729
D=715392+18x78732+527067
D=715392+1417176+527067
D=2659635
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
a) Để A có giá trị nguyên thì \(3n+9⋮n-4\)
\(\Rightarrow3n-9-3.\left(n-4\right)⋮n-4\)
\(\Rightarrow3n-9-3n+12⋮n-4\)
\(\Rightarrow3⋮n-4\Rightarrow n-4\inƯ\left(3\right)\)
\(\Rightarrow n-4\in\left\{-1;-2;-4;1;2;4\right\}\)
\(\Rightarrow n\in\left\{3;2;0;5;6;8\right\}\)
b) Để B có giá trị nguyên thì \(6n+5⋮2n-1\)
\(\Rightarrow6n+5-3.\left(2n-1\right)⋮2n-1\)
\(\Rightarrow6n+5-6n+3⋮2n-1\)
\(\Rightarrow8⋮2n-1\Rightarrow2n-1\inƯ\left(8\right)\)
Mà 2n - 1 là số lẻ \(\Rightarrow2n-1\in\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{0;1\right\}\)
* Để A có giá trị nguyên thì 3n + 9 chia hết cho n - 4
Có 3n + 9 = 3. ( n - 4 ) + 21 chia hết cho n - 4
Mà 3. ( n - 4 ) chia hết cho n - 4
3 . ( n - 4 ) + 21 chia hết cho n - 4 <=> 21 chia hết cho n - 4
=> n - 4 thuộc U ( 21 ) = { 1 ; 3 ; 7 ; 21 }
n - 4 = 1 => n = 5
n - 4 = 3 => n = 7
n - 4 = 7 => n = 11
n - 4 = 21 => n = 25
Vậy n = { 5 ; 7 ; 11 ; 25 }
Giải câu b trước nha.
b) Ta có: A = 2n+2/2n = 2n/2n + 2/2n = 1 + 1/n
Có 1 là số nguyên => Để A là số nguyên thì 1/n là số nguyên
=> n = {-1;1}
Vậy n=1 hoặc n=-1 thì A là số nguyên.
a) Để A là phân số thì n khác 1 và -1 ( theo câu b )