K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2021

6844464-481444.7/8-9=/

A= \(\frac{2}{5}+(\frac{-4}{3})+(\frac{-1}{2})\)

A = \(\frac{12}{30}+(\frac{-40}{30})+(\frac{-15}{30})\)

A= \(\frac{12}{30}+\frac{-55}{30}\)

A = \(\frac{-43}{30}\)

27 tháng 1 2016

Kho..................wa.....................troi.....................thi......................lanh.................ret.......................ai........................tich..........................ung.....................ho........................minh.....................cho....................do....................lanh

27 tháng 1 2016

\(7832\)

6 tháng 8 2016

1)

a. \(\left(3x^2-50\right)^2=5^4\)

\(\Leftrightarrow3x^4-50=625\)

\(\Leftrightarrow3x^4=675\)

\(\Leftrightarrow x^4=225\)

\(\Leftrightarrow x=\sqrt{15}\) 

2)

a. \(\frac{\left(3^4-3^3\right)^4}{27^3}=\frac{3^{16}-3^{12}}{\left(3^3\right)^3}=\frac{3^{12}.3^4-3^{12}}{3^9}=\frac{3^{12}\left(3^4-1\right)}{3^9}\)

\(=\frac{3^{12}.80}{3^9}=3^3.80=27.80=2160\)

b. \(\frac{25^3}{\left(5^5-5^3\right)^2}=\frac{\left(5^2\right)^3}{5^{10}-5^6}=\frac{5^6}{5^6.5^4-5^6}=\frac{5^6}{5^6\left(5^4-1\right)}\)

\(=\frac{5^6}{5^6.624}=\frac{1}{624}\)

26 tháng 6 2018

\(a,A=2^0+2^1+2^2+....+\)\(2^{2010}\)

\(\Rightarrow2A=2^1+2^2+2^3+....+2^{2011}\)

 \(2A-A=\left(2^1+2^2+2^3+...+2^{2011}\right)-\left(2^0+2^1+2^2+...+2^{2010}\right)\)

  \(A=2^{2011}-2^0\)

\(A=2^{2011}-1\)

\(b,B=1+3+3^2+...+3^{100}\)

\(\Rightarrow3B=3+3^2+3^3+...+3^{101}\)

\(3B-B=\left(3+3^2+3^3+...+3^{101}\right)-\left(1+3+3^2+...+3^{100}\right)\)

\(2B=3^{101}-1\)

\(\Rightarrow B=\frac{3^{101}-1}{2}\)

\(c,C=4+4^2+4^3+...+4^n\)

\(\Rightarrow4C=4^2+4^3+4^4+...+4^{n+1}\)

\(4C-C=\left(4^2+4^3+4^4+...+4^{n+1}\right)-\left(4+4^2+4^3+...+4^n\right)\)

\(3C=4^{n+1}-4\)

\(\Rightarrow C=\frac{4^{n+1}-4}{3}\)

\(d,D=1+5+5^2+...+5^{2000}\)

\(\Rightarrow5D=5+5^2+5^3+...+5^{2001}\)

\(5D-D=\left(5+5^2+5^3+...+5^{2001}\right)-\left(1+5+5^2+...+5^{2000}\right)\)

\(4D=5^{2001}-1\)

\(\Rightarrow D=\frac{5^{2001}-1}{4}\)

21 tháng 3 2021

b)

B=1+3+3^2+3^3+..+3^100

=> 3B = 3 + 3^2 + 3^3 + ...+ 3^101

=> 3B - B = ( 3 + 3^2 + 3^3 + ...+ 3^101) - (1+3+3^2+3^3+..+3^100)

=> 2B = 3^101 - 1

=> B =( 3^101 - 1) / 2

8 tháng 8 2018

a) \(\left(\frac{2}{3}+\frac{1}{5}\right)^2:\left(\frac{2}{5}-\frac{1}{3}\right)\)

\(=\left(\frac{13}{15}^2\right)\cdot15\)

\(=\frac{169\cdot15}{225}\)

\(=\frac{169}{15}\)

8 tháng 8 2018

b) 

\(\left(2\frac{1}{3}-1\frac{3}{5}\right)\cdot\left(2\frac{4}{9}:3\frac{1}{2}\right)^2\)

\(=\left(\frac{7}{3}-\frac{8}{5}\right)\cdot\left(\frac{22}{9}\cdot\frac{7}{2}\right)^2\)

\(=\frac{11\cdot5929}{15\cdot81}\)

\(=53,6781893\)

11 tháng 9 2017

Bài 3 : 

Vì \(\left(x-2\right)^2\ge0\forall x\)

Nên :  \(A=\left(x-2\right)^2-4\ge-4\forall x\)

Vậy \(A_{min}=-4\) khi x = 2

11 tháng 9 2017

B1: lấy máy tính mà tính thôi bạn (nhớ lm theo từng bước)

B2: 

a, \(\left|x-\frac{2}{3}\right|-\frac{1}{2}=\frac{5}{6}\)

\(\left|x-\frac{2}{3}\right|=\frac{4}{3}\)

\(\Rightarrow\orbr{\begin{cases}x-\frac{2}{3}=\frac{4}{3}\\x-\frac{2}{3}=\frac{-4}{3}\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{-2}{3}\end{cases}}}\)

b, \(\frac{\left(-2\right)^x}{512}=-32\Rightarrow\left(-2\right)^x=-16384\Rightarrow x\in\varnothing\)

B3:

Vì \(\left(x-2\right)^2\ge0\Rightarrow A=\left(x-2\right)^2-4\ge-4\)

Dấu "=" xảy ra khi x = 2

Vậy GTNN của A = -4 khi x = 2

Bài 8:

a: \(\left(\dfrac{2}{5}+\dfrac{3}{4}\right)^2=\left(\dfrac{8+15}{20}\right)^2=\left(\dfrac{23}{20}\right)^2=\dfrac{529}{400}\)

b: \(\left(\dfrac{5}{4}-\dfrac{1}{6}\right)^2=\left(\dfrac{15}{12}-\dfrac{2}{12}\right)^2=\left(\dfrac{13}{12}\right)^2=\dfrac{169}{144}\)

AH
Akai Haruma
Giáo viên
25 tháng 10 2018

\(B=1+5+5^2+5^3+...+5^{2008}+5^{2009}\)

\(\Rightarrow 5B=5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\)

Trừ theo vế:

\(5B-B=(5+5^2+5^3+5^4+...+5^{2009}+5^{2010})-(1+5+5^2+...+5^{2009})\)

\(4B=5^{2010}-1\)

\(B=\frac{5^{2010}-1}{4}\)

AH
Akai Haruma
Giáo viên
25 tháng 10 2018

\(S=\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+..+\frac{3^{n-1}+1}{2}\)

\(=\frac{3^0+3^1+3^2+...+3^{n-1}}{2}+\frac{\underbrace{1+1+...+1}_{n}}{2}\)

\(=\frac{3^0+3^1+3^2+..+3^{n-1}}{2}+\frac{n}{2}\)

Đặt \(X=3^0+3^1+3^2+..+3^{n-1}\)

\(\Rightarrow 3X=3^1+3^2+3^3+...+3^{n}\)

Trừ theo vế:

\(3X-X=3^n-3^0=3^n-1\)

\(\Rightarrow X=\frac{3^n-1}{2}\). Do đó \(S=\frac{3^n-1}{4}+\frac{n}{2}\)

20 tháng 11 2017

a) \(\left(-\dfrac{2}{3}+\dfrac{3}{7}\right):\dfrac{4}{5}+\left(-\dfrac{1}{3}+\dfrac{4}{7}\right):\dfrac{4}{5}\)

\(=\left(-\dfrac{5}{21}\right):\dfrac{4}{5}+\left(\dfrac{5}{21}\right):\dfrac{4}{5}\)

\(=\left(-\dfrac{5}{21}+\dfrac{5}{21}\right):\dfrac{4}{5}\)

\(=0:\dfrac{4}{5}\)

\(=0\)

b) \(\dfrac{5}{9}:\left(\dfrac{1}{11}-\dfrac{5}{22}\right)+\dfrac{5}{9}:\left(\dfrac{1}{15}-\dfrac{2}{3}\right)\)

\(=\dfrac{5}{9}:\left(-\dfrac{3}{22}\right)+\dfrac{5}{9}:\left(-\dfrac{3}{5}\right)\)

\(=\dfrac{5}{9}:\left[\left(-\dfrac{3}{22}\right)+\left(-\dfrac{3}{5}\right)\right]\)

\(=\dfrac{5}{9}:\left(-\dfrac{81}{110}\right)\)

\(=-\dfrac{550}{729}\)

c) \(4^2.4^3:4^{10}\)

\(=\dfrac{4^5}{4^{10}}\)

\(=\dfrac{1}{4^5}\)

\(=\dfrac{1}{256}\)

d) \(\left(0,6\right)^5:\left(0,2\right)^6\)

\(=\dfrac{\left(0,2\cdot3\right)^5}{\left(0,2\right)^6}\)

\(=\dfrac{\left(0,2\right)^5\cdot3^5}{\left(0,2\right)^6}\)

\(=\dfrac{243}{0,2}\)

\(=1215\)

Mai mốt bạn đăng một lần ít thôi nha tại giờ khuya quá nên mình chỉ làm đến đây thôi =))