![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1) x\(^2\) - 5 = 0
\(\Leftrightarrow\)(x - \(\sqrt{5}\))(x + \(\sqrt{5}\)) = 0
\(\Leftrightarrow\)x = \(\sqrt{5}\) hoặc
x = -\(\sqrt{5}\)
Câu 2) x\(^2\) - \(2\sqrt{13}x\) +13 = 0
\(\Leftrightarrow\)(x - \(\sqrt{13}\))\(^2\) = 0
\(\Leftrightarrow\)x - \(\sqrt{13}\) = 0
\(\Leftrightarrow\)x = \(\sqrt{13}\)
Câu 3) \(\left(x+2\right)\sqrt{x-3}=0\)
\(\Leftrightarrow x=-2\) hoặc
\(x=3\)
Câu 4) Tới lúc này mình hơi lười nên bạn tự giải phương trình nhé.
Hướng dẫn: Ta biết nếu\(\sqrt{x}\) = a với a\(\ge\) 0 thì x= a\(^2\), nên ta đưa về tìm x thỏa mãn (x + \(\sqrt{x-2}\))\(^2\) = 4(x-1)
Giải phương trình này ta có x=2.
Câu 5)\(\sqrt{9-12x+4x^2}=4\)
\(\Leftrightarrow\sqrt{\left(3-2x\right)^2}=4\)
\(\Leftrightarrow\left|3-2x\right|=4\)
\(\Leftrightarrow3-2x=4\) hoặc
-3 + 2x = 4
\(\Leftrightarrow\) x= -0.5 hoặc x= 3.5
![](https://rs.olm.vn/images/avt/0.png?1311)
+) ta có : \(A=\sqrt{13+4\sqrt{10}}-\sqrt{13-4\sqrt{10}}=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}-\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)
\(=2\sqrt{2}+\sqrt{5}-2\sqrt{2}+\sqrt{5}=2\sqrt{5}\) (sữa đề)
+) ta có : \(B=\sqrt{\dfrac{3-2\sqrt{2}}{17-12\sqrt{2}}}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)
\(=\sqrt{\dfrac{\left(\sqrt{2}-1\right)^2}{\left(3-2\sqrt{2}\right)^2}}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}=\dfrac{\sqrt{2}-1}{3-2\sqrt{2}}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)
\(=\dfrac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)^2}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}=\dfrac{1}{\sqrt{2}-1}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)
\(=\dfrac{\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+\sqrt{\dfrac{\left(2-\sqrt{3}\right)\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}\)
\(=\sqrt{2}+1+2-\sqrt{3}=3-\sqrt{3}+\sqrt{2}\) (sữa đề )
+) đk : \(x\ne-3\)
ta có : \(C=\dfrac{\sqrt{x^2+6x+9}}{x+3}=\dfrac{\sqrt{\left(x+3\right)^2}}{x+3}=\dfrac{\left|x+3\right|}{x+3}\)
\(\left[{}\begin{matrix}C=1\left(x>-3\right)\\C=-1\left(x< -3\right)\end{matrix}\right.\)
+) \(m\ge\dfrac{5}{2}\)
ta có : \(D=\sqrt{2m+4+6\sqrt{2m-5}}-\sqrt{2m-5}\)
\(=\sqrt{\left(\sqrt{2m-5}+3\right)^2}-\sqrt{2m-5}=\left|\sqrt{2m-5}+3\right|-\sqrt{2m-5}\)
\(\Leftrightarrow\left[{}\begin{matrix}C=3\left(m\ge7\right)\\C=-3-2\sqrt{2m-5}\left(\dfrac{5}{2}\le m\le7\right)\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
1: Tọa độ giao của (d) với trục Ox là:
y=0 và 3x-4=0
=>x=4/3 và y=0
Tọa độ của (d) với trục Oy là:
x=0 và y=3*0-4=-4
2: Theo đề, ta có hệ phương trình:
a+b=3 và -3a+b=-1
=>a=1; b=2
![](https://rs.olm.vn/images/avt/0.png?1311)
c: =>3x^2+3y^2=39 và 3x^2-2y^2=-6
=>5y^2=45 và x^2=13-y^2
=>y^2=9 và x^2=4
=>\(\left\{{}\begin{matrix}x\in\left\{2;-2\right\}\\y\in\left\{3;-3\right\}\end{matrix}\right.\)
d: \(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{x}=5\\\sqrt{x}-\sqrt{y}=-\dfrac{11}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\\sqrt{y}=1+\dfrac{11}{2}=\dfrac{13}{2}\end{matrix}\right.\)
=>x=1 và y=169/4
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3-3}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{x+1}-\dfrac{2}{y+4}=4-3=1\\-\dfrac{2}{x+1}-\dfrac{5}{y+4}=9-2=7\end{matrix}\right.\)
=>x+1=11/9 và y+4=-11/19
=>x=2/9 và y=-87/19
\(22-2\sqrt{x+5}+1=-x^2-9x\)
\(23-2\sqrt{x+5}=-x^2-9x\)
\(2\sqrt{x+5}=23+x^2+9x\)
\(4\left(x+5\right)=\left(23+x^2+9x\right)^2\)
\(4x+20=529+x^4+81x^2+46x^2+18x^3+261x\)
\(x^4+18x^3+81x^2+257x+509=0\)
bấm máy thì ra nha
\(b,P=\sqrt{12-4\sqrt{3}}\)
\(P=\sqrt{4\left(3-\sqrt{3}\right)}\)
\(c.\sqrt{\left(2\sqrt{3}\right)^2+4\sqrt{3}+1}-\sqrt{\left(2\sqrt{3}\right)^2-4\sqrt{3}+1}\)
\(\left|2\sqrt{3}+1\right|-\left|2\sqrt{3}-1\right|\)
\(2\sqrt{3}+1-2\sqrt{3}+1\)
\(=2\)