![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{2019}{210}+\frac{2019}{280}+\frac{2019}{360}+\frac{2019}{450}+\frac{2019}{550}\)
\(=\frac{673}{70}+\frac{2019}{280}+\frac{673}{120}+\frac{673}{150}+\frac{2019}{550}\)
\(=\left[\frac{673}{70}+\frac{2019}{280}\right]+\frac{673}{120}+\frac{673}{150}+\frac{2019}{550}\)
\(=\left[\frac{2692}{280}+\frac{2019}{280}\right]+\frac{673}{120}+\frac{673}{150}+\frac{2019}{550}\)
\(=\frac{673}{40}+\frac{673}{120}+\frac{673}{150}+\frac{2019}{550}\)
\(=\left[\frac{673}{40}+\frac{673}{120}\right]+\frac{673}{150}+\frac{2019}{550}\)
\(=\left[\frac{2019}{120}+\frac{673}{120}\right]+\frac{673}{150}+\frac{2019}{550}\)
\(=\frac{673}{30}+\frac{673}{150}+\frac{2019}{550}\)
\(=\left[\frac{673}{30}+\frac{673}{150}\right]+\frac{2019}{550}\)
\(=\frac{673}{25}+\frac{2019}{550}=\frac{14806}{550}+\frac{2019}{550}=\frac{16825}{550}=\frac{673}{22}\)
P/S : Các a chị check dùm em ạ
![](https://rs.olm.vn/images/avt/0.png?1311)
a) (-2 019) + (-550) + (-451) = [(-2 019) + (-451)] + (-550) = (-2 470) + (-550) = -(2 470 + 550) = -3 020
b) (-2) + 5 + (-6) + 9 = [(-2) + 5 ]+[ (-6) + 9] = 3 + 3 = 6
![](https://rs.olm.vn/images/avt/0.png?1311)
a) -2021.371+2021-(-629)
=2021.(-371)+2021+629
=2021.[-371+1]+629
=2021.(-370)+629
=-747770+629
=-747141
b) 957.(-37)-137.(-957)
=957.(-37)+137.957
=957.[-37+137]
=957.100
=95700
d) (451-527)+(527-741-451)
=451-527+527-741-451
=(451-451)+(-527+527)-741
=0+0-741
=-741
e) (-632+129)-(-17-632+129)
=-632+129+17+632-129
=(-632+632)+(129-12)+17
=0+0+17
=17
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x-1\right)^4=81\)
\(\Rightarrow\left(x-1\right)^4=\left(\pm3\right)^4\)
\(\Rightarrow\orbr{\begin{cases}x-1=3\\x-1=-3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=4\\x=-2\end{cases}}\)
vậy___
a - (- 351) - (621 + 451 - 821)
= a + 351 - 621 - 451 + 821
= a - (451 - 351) + (821 - 621)
= a - 100 + 100
= a - 0
= a
1,\(\left(x-1\right)^4=81\)
\(\Rightarrow\left(x-1\right)^4=\orbr{\begin{cases}3^4\\\left(-3\right)^4\end{cases}}\)
\(\Rightarrow x-1=\orbr{\begin{cases}3\\-3\end{cases}}\)
\(\Rightarrow x=\orbr{\begin{cases}4\\-2\end{cases}}\)
2,\(a-\left(-351\right)-\left(621+451-821\right)\)
\(=a+351-251\)
\(=a+100\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(32^{50}\)và \(27^{51}\)
\(32^{50}=\left(32^2\right)^{25}=1024^{25}\)
\(27^{51}=\left(27^2\right)^{25}.27=729^{25}.27\)
Vì \(1024>729\)nên \(1024^{25}>729^{25}.27\)hay \(32^{50}>27^{51}\)
b) \(31^9\)và \(9^{16}\)
\(31^9=\left(91^3\right)^2=273^2\)
\(9^{16}=\left(9^2\right)^4=81^4=\left(81^2\right)^2=6561^2\)
Vì \(6561>273\)nên \(273^2< 6561^2\)hay \(31^9< 9^{16}\).
Cho a,b,c dương thỏa mãn : a+b+c=2019
Tính A = \(\frac{a}{2019-c}+\frac{b}{2019-a}+\frac{c}{2019-b}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Thiếu dữ kiện, nếu chỉ cho vậy thì không tính đc gt cụ thể của A
+ Làm theo đề là tìm Min của A nhé!
\(A=\frac{a}{2019-c}+\frac{b}{2019-a}+\frac{c}{2019-b}=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}.\)
\(A+3=\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)\(\ge\left(a+b+c\right)\frac{9}{2\left(a+b+c\right)}=\frac{9}{2}\)(BĐT Bunhia)
Dấu "=" xra khi a=b=c=2019/3
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{-334}{320}=\frac{-334\div2}{320\div2}=\frac{-167}{160}\)
\(\frac{451}{200}=\frac{451}{200}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
+)Ta có:\(A=2019+2019^2+2019^3+2019^4+2019^5+2019^6\)
\(\Rightarrow A=\left(2019+2019^2\right)+\left(2019^3+2019^4\right)+\left(2019^5+2019^6\right)\)
\(\Rightarrow A=\left(2019+2019^2\right)+2019^2.\left(2019+2019^2\right)+2019^4.\left(2019+2019^2\right)\)
+)Ta lại có:20192 tận cùng là 1
=>2019+20192 tân cùng là 9+1=10
=>2019+20192\(⋮2\)
\(\Rightarrow\left(2019+2019^2\right)⋮2;2019^2.\left(2019+2019^2\right)⋮2;2019^4.\left(2019+2019^2\right)⋮2\)
\(\Rightarrow A⋮2\)
Vậy \(A⋮2\left(ĐPCM\right)\)
Chúc bn học tốt
A = 2019 + 20192 + 20193 + 20194 + 20195 + 20196
A = ( 2019 + 20192 ) + ( 20193 + 20194) + ( 20195 + 20196)
A = 1 . ( 2019 + 20192 ) + 20193 . (2019 + 20192 ) + 20195 . ( 2019 + 20192 )
A = 1 . 4 078 380 + 20193 . 4 078 380 + 20195 . 4 078 380
A = 4 078 380 . ( 1 + 20193 + 20195) \(⋮2\rightarrowĐPCM\)
# HOK TỐT #
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{2018^{2019}-1}{2018^{2019}+1}=\frac{2018^{2019}+1-2}{2018^{2019}+1}=\frac{2018^{2019}+1}{2018^{2019}+1}-\frac{2}{2018^{2019}+1}=1-\frac{2}{2018^{2019}+1}\)
\(B=\frac{2018^{2019}}{2018^{2019}+2}=\frac{2018^{2019}+2-2}{2018^{2019}+2}=\frac{2018^{2019}+2}{2018^{2019}+2}-\frac{2}{2018^{2019}+2}=1-\frac{2}{2018^{2019}+2}\)
Ta có: \(\frac{2}{2018^{2019}+1}>\frac{2}{2018^{2019}+2}\)
\(\Rightarrow1-\frac{2}{2018^{2019}+1}< 1-\frac{2}{2018^{2019}+2}\)
\(\Rightarrow A< B\)
Vậy .....