Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Có:n+3 chia hết n-2
Mà:n-2 chia hết n-2
Xét: (n+3)-(n-2) chia hết n-2
n+3-n+2 chia hết cho n-2
(n-n)+3-2 chia hết cho n-2
1 chia hết cho n-2
nên: n-2 E Ư(1)={1:-1}
Xét:
n-2=1 n-2=-1
n =1+2 n =-1+2
n =3 E Z(chọn) n =1 E Z(chọn)
Vậy:n={1;3}
a) Có:n+3 chia hết n-2
Mà:n-2 chia hết n-2
Xét: (n+3)-(n-2) chia hết n-2
n+3-n+2 chia hết cho n-2
(n-n)+3+2 chia hết cho n-2
5 chia hết cho n-2
nên: n-2 E Ư(5)={1:-1;5;-5}
Xét:
n-2=1 n-2=-1 n-2=5 n-2=-5
n =1+2 n =-1+2 n =5+2 n =-5+2
n =3 n =1 n =7 n=-3
Vậy:n={1;3;-3;7}
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1) VP= \frac{1}{n}-\frac{1}{n+1}\)\(= \frac{n+1}{n(n+1)}-\frac{n}{n(n+1)}\)\(= \frac{n+1-n}{n(n+1)}\)\(= \frac{1}{n(n+1)}\)\(= VT\)
2) \(VP= \frac{1}{n+1}-\frac{1}{(n+1)(n+2)}= \frac{(n+2)}{n(n+1)(n+2)}-\frac{n}{n(n+1)(n+2)}\)\(= \frac{n+2-n}{n(n+1)(n+2)}= \frac{2}{n(n+1)(n+2)}=VT\)
3) \(VP= \frac{1}{n(n+1)(n+2)}-\frac{1}{(n+1)(n+2)(n+3)}=\frac{n+3}{n(n+1)(n+2)(n+3)}-\frac{n}{n(n+1)(n+2)(n+3)}\)\(= \frac{n+3-n}{n(n+1)(n+2)(n+3)}=\frac{3}{n(n+1)(n+2)(n+3)(n+4)}=VT\)
Những ý sau làm tương tự, thế mà chẳng thèm mở mồm ra hỏi bạn :))
![](https://rs.olm.vn/images/avt/0.png?1311)
a, n2 + 2n + 4 chia hết cho n+1
=> n(n+1)+n+4 chia hết cho n+1
=> n(n+1)+n+1+3 chia hết cho n+1
=> (n+1).(n+1)+3 chia hết cho n+1
Vì (n+1)(n+1) chia hết cho n+1
=> 3 chia hết cho n+1
=> n+1 thuộc Ư(3)
=> n+1 thuộc {1; -1; -3; 3}
Mà n thuộc N
=> n thuộc {0; 2}
b, 2n2 + 10n + 20 chia hết cho 2n+3
n(2n+3)+7n+20 chia hết cho 2n+3
Vì n(2n+3) chia hết cho 2n+3
=> 7n+20 chia hết cho 2n+3
=> 14n+40 chia hết cho 2n+3
=> 14n+21+19 chia hết cho 2n+3
=> 7.(2n+3)+19 chia hết cho 2n+3
Vì 7.(2n+3) chia hết cho 2n+3
=> 19 chia hết cho 2n+3
=> 2n+3 thuộc Ư(19)
=> 2n+3 thuộc {1; -1; 19; -19}
=> 2n thuộc {-2; -4; 16; -22}
Mà n thuộc N
=> n = 8