Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(2010^{2009}+2009^{2009}\right)^{2010}\)
\(=\left(2010^{2009}+2009^{2009}\right)^{2009}\left(2010^{2009}+2009^{2009}\right)\)
\(>\left(2010^{2009}+2009^{2009}\right)^{2009}.2010^{2009}\)
\(=\left(2010.2010^{2009}+2010.2009^{2009}\right)^{2009}\)
\(>\left(2010.2010^{2009}+2009.2009^{2009}\right)^{2009}\)
\(=\left(2010^{2010}+2009^{2010}\right)^{2009}=B\)
Vậy \(A>B\)
Dạo này anh ít on lắm em có nhờ thì em kiếm kênh khác nhờ không thì phải đợi a on a mới làm được nhé
Dễ thấy:
\(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)
\(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)
\(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)
=>\(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
Hay \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008+2009+2010}{2009+2010+2011}\)
Vậy A > B
Đặt \(a=2010^{2009};b=2009^{2009}\)\(\left(a,b>0\right)\)
\(A=\left(a+b\right)^{2010}=\left(a+b\right)^{2009}.\left(a+b\right)\)
\(B=\left(a.2010+b.2009\right)^{2009}=\left[a+2009\left(a+b\right)\right]^{2009}\)
Chia A và B cho \(\left(a+b\right)^{2009}:\)
\(A=a+b;B=\dfrac{\left[a+2009\left(a+b\right)\right]^{2009}}{\left(a+b\right)^{2009}}\)\(=\left(\dfrac{a}{a+b}+2009\right)^{2009}\)
Dễ thấy A<B.
\(B=\left(2010^{2009}.2010+2009^{2009}.2009\right)^{2009}\)
\(B< \left(2010^{2009}.2010+2009^{2009}.2010\right)^{2009}\)
\(B< \left(2010^{2009}+2009^{2009}\right)^{2009}.2010^{2009}\)
\(B< \left(2010^{2009}+2009^{2009}\right)^{2009}.\left(2010^{2009}+2009^{2009}\right)\)
\(B< \left(2010^{2009}+2009^{2009}\right)^{2010}\)
\(\Rightarrow B< A\)
Ta có :
�=20092010−220092011−2<1B=20092011−220092010−2<1
⇔�<20092010−2+201120092011−2+2011=20092010+200920092011+2009=2009(20092009+1)2009(20092010+1)=20092009+120092010+1=�⇔B<20092011−2+201120092010−2+2011=20092011+200920092010+2009=2009(20092010+1)2009(20092009+1)=20092010+120092009+1=A
⇔�>�⇔A>B
\(=2009\times2009-2008\times2009+2008\)
\(=2009\times\left(2009-2008\right)+2008\)
\(=2009\times1+2008\)
\(=4017\)