Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left(x-1\right)^{2012}\ge0\forall x;\left(y-2\right)^{2010}\ge0\forall y;\left(x-z\right)^{2008}\ge0\forall x;z\)
Mà theo đề bài
\(\Rightarrow\hept{\begin{cases}x-1=0\\y-2=0\\x-z=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=2\\z=1\end{cases}}}\)
Vậy x = z = 1 và y = 2
Ta có:
\(\left(x-1\right)^{2012}\ge0\)
\(\left(y-2\right)^{2010}\ge0\)
\(\left(x-z\right)^{2008}\ge0\)
\(\Rightarrow\left(x-1\right)^{2012}+\left(y-2\right)^{2010}+\left(x-z\right)^{2008}=0\)Khi \(\hept{\begin{cases}\left(x-1\right)^{2012}=0\\\left(y-2\right)^{2010}=0\\\left(x-z\right)^{2008}=0\end{cases}}\)
Từ đó ta tính được x=1; y=2; z=1
2. Giả sử S là số chính phương
S = abc + bca + cab
= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
= 111a + 111b + 111c
= 111 (a + b + c)
= 3 . 37 . (a + b + c)
Vì S là số chính phương nên khi phân tích S là thừa số nguyên tố sẽ có số mũ chẵn.
=> 3 (a + b + c) chia hết cho 37
Mà 3 và 37 là 2 số nguyên tố cùng nhau
=> (a + b + c) chia hết cho 37
Vì a + b + c \(\le\) 27
=> (a + b + c) không chia hết cho 27.
Vậy S không phải là số chính phương.
a ) \(\frac{3^5}{27}=\frac{3^5}{3^3}=\frac{3^3.3^2}{3^3}=3^2=9\)
b ) \(\frac{4^7}{64}=\frac{4^7}{4^3}=\frac{4^3.4^4}{4^3}=4^4=256\)
c ) \(\frac{x^{13}}{x^5}=\frac{x^5.x^8}{x^5}=x^8\)
d ) \(\frac{x^{19}}{x^{18}}=\frac{x^{18}.x}{x^{18}}=x\)
e ) \(\frac{2.x^{10}}{x^7}=\frac{2.\left(x^7.x^3\right)}{x^7}=2.x^3\)
câu 1:
theo bài ra: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
áp dụng tích chất tỉ lệ thức tá có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}=\left(\frac{a+b}{c+d}\right)^3\)
\(\Leftrightarrow\frac{a^3+b^3}{c^3+d^3}=\frac{\left(a+b\right)^3}{\left(c+d\right)^3}\left(đ.p.c.m\right)\)
a/b = c/d =) a/c=b/d
Tc dãy tỉ số:
+, a+b/c+d=a/c=b/d =) mũ 3 cả 3 vế nhá
+, a/c=b/d => mũ 3 cả 2 vế r công lại
Cc ra 2 kết luận đều = a/c=b/d mũ 3
Câu a nha