Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2007/2007.2008 và 2008/2008.2009
Ta có 2007/2007.2008=1/2008
2008/2008.2009=1/2009
Vì: 1/2008>1/2009
Nên: 2007/2007.2008>2008/2009
a)
\(A=\dfrac{2007.2008-1}{2007.2008}=1-\dfrac{1}{2007.2008}\)
\(B=\dfrac{2008.2009-1}{2008.2009}=1-\dfrac{1}{2008.2009}\)
\(A-B=\dfrac{1}{2008.2009}-\dfrac{1}{2007.2008}< 0\Rightarrow A< B\)
b)
\(\left\{{}\begin{matrix}A=\dfrac{25}{43}\\B=\dfrac{10}{27}\end{matrix}\right.\) ; \(\dfrac{A}{B}=\dfrac{25}{43}.\dfrac{27}{10}=\dfrac{5.27}{43.2}>\dfrac{54.2}{43.2}>1\Rightarrow A>B\)
Ta có: 2009.2010>2008.2009
\(\frac{1}{2009\cdot2010}< \frac{1}{2008\cdot2009}\)
\(\Rightarrow E>F\)
\(1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2016\cdot2017}+\frac{1}{2017\cdot2018}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}+\frac{1}{2017}-\frac{1}{2018}\)
\(=2-\frac{1}{2018}\)
\(=\frac{1009}{2018}-\frac{1}{2018}\)
\(=\frac{1008}{2018}=\)TỰ RÚT GỌN NHA
\(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2006.2007}+\frac{1}{2007.2008}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2007}-\frac{1}{2008}\)
\(=2-\frac{2007}{2008}\)
\(=\frac{2009}{2008}\)
~Học tốt~
Ta có: \(A=1\cdot2\cdot3\cdot...\cdot2007\cdot2008\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right)\)
\(A=2008!\left[\left(1+\frac{1}{2008}\right)+\left(\frac{1}{2}+\frac{1}{2007}\right)+...+\left(\frac{1}{1004}+\frac{1}{1005}\right)\right]\)
\(A=2008!\left(\frac{2009}{2008}+\frac{2009}{2\cdot2007}+...+\frac{2009}{1004\cdot1005}\right)\)
\(A=\frac{2009!}{2008}+\frac{2009!}{2\cdot2007}+...+\frac{2009!}{1004\cdot1005}\)
\(A=2009\left(2\cdot3\cdot...\cdot2017+3\cdot4\cdot...\cdot2016\cdot2018+2\cdot3\cdot...\cdot1003\cdot1006\cdot...\cdot2018\right)\)
chia hết cho 2019
=> đpcm
A = 2006.2007+2008
A = (2008 - 2).2007 + 2008
A = 2008.2007 - 2.2007 + 2008
A = 2008.2007 - 4014 + 2008
A = 2008.2007 - 2006 = B
Vậy A = B
Đặt S = 1.2 + 2.3 + ....+ 2007.2008 + 2008.2009
=> 3S = 1.2.3 + 2.3(4 - 1) + ..... + 2007.2008(2009 - 2006) + 2008.2009(2010 - 2007)
=> 3S = 1.2.3 + 2.3.4 - 1.2.3 + .......+ 2007.2008.2009 - 2006.2007.2008 + 2008.2009.2010 - 2007.2008.2009
=> 3S = (1.2.3 + 2.3.4 + .....+ 2007.2008.2009 + 2008.2009.2010) - (1.2.3 + ..... + 2006.2007.2008 + 2007.2008.2009)
=> 3S = 2008.2009.2010
=> S \(=\frac{2008.2009.2010}{3}=2008.2009.670=2702828240\)
a) \(\dfrac{2007.2008-1}{2007.2008}\) và \(\dfrac{2008.2009-1}{2008.2009}\)
\(\dfrac{2007.2008-1}{2007.2008}=1+\dfrac{1}{2007.2008}\)
\(\dfrac{2008.2009-1}{2008.2009}=\dfrac{1}{2008.2009}\)
Vì \(\dfrac{1}{2007.2008}\)>\(\dfrac{1}{2008.2009}\) nên \(\dfrac{2007.2008-1}{2007.2008}\)>\(\dfrac{2008.2009-1}{2008.2009}\)
tui nghĩ phải bé hơn chứ