K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2024

\(3A=3+3^2+3^3+...+3^{2025}\)

\(3A-A=3+3^2+3^3+...+3^{2025}-\left(1+3+3^2+...+3^{2024}\right)=-1+3^{2025}\)

\(A=\dfrac{-1+3^{2025}}{2}\)

DT
18 tháng 6 2024

\(A=1+3+3^2+...+3^{2024}\\ 3A=3+3^2+3^3+...+3^{2025}\\ 3A-A=\left(3+3^2+3^3+...+3^{2025}\right)-\left(1+3+3^2+...+3^{2024}\right)\\ 2A=3^{2025}-1\\ A=\dfrac{3^{2025}-1}{2}\)

21 tháng 9 2023

A = \(\dfrac{1}{1+2+3}\)+\(\dfrac{1}{1+2+3+4}\)+...+ \(\dfrac{1}{1+2+...+2004}\)\(\dfrac{2}{2025}\)

A = \(\dfrac{1}{\left(1+3\right).3:2}\)+\(\dfrac{1}{\left(4+1\right).4:2}\)+...+ \(\dfrac{1}{\left(2024+1\right).2024:2}\)+\(\dfrac{2}{2025}\)

A = \(\dfrac{2}{3.4}\)+\(\dfrac{2}{4.5}\)+...+\(\dfrac{2}{2024.2025}\)\(\dfrac{2}{2025}\)

A = 2.(\(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\)+...+ \(\dfrac{1}{2024.2025}\)) + \(\dfrac{2}{2025}\)

A = 2.(\(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\)+...+ \(\dfrac{1}{2024}\) - \(\dfrac{1}{2025}\)) + \(\dfrac{2}{2025}\)

A = 2.(\(\dfrac{1}{3}\) - \(\dfrac{1}{2025}\)) + \(\dfrac{2}{2025}\)

A = \(\dfrac{2}{3}\) - \(\dfrac{2}{2025}\) + \(\dfrac{2}{2025}\)

A  = \(\dfrac{2}{3}\) 

 

28 tháng 9 2023

1+1/2.(1+2)+1/3.(1+2+3)+1/4.(1+2+3+4)+...+1/2023.(1+2+3+...+2023)

=1+1/2.(1+2).2/2+1/3.(1+3).3/2+1/4.(1+4).4/2+...+1/2023.(1+2+3+...+2023).2023/2

=2/2+3/2+4/2+...+2023/2

=2+3+4+...+2023/2

=2025.2022/2/2                 

=1023637,5       

19 tháng 7 2023

42 : x + 36 : x = 6

19 tháng 7 2023

TH1

42:x=6

x= 42 :6 

X= 7

TH 2

36:x = 6

X = 36: 6

X= 6

30 tháng 9 2023

\(S=1+3^2+3^4+...+3^{2022}\)

\(3^2S=9S=3^2+3^4+3^6+...+3^{2024}\)

\(S=\dfrac{9S-S}{8}=\left(3^{2024}-1\right):8\)

d, không đáp án nào đúng

AH
Akai Haruma
Giáo viên
30 tháng 9 2023

Lời giải:

$S=1+3^2+3^4+....+3^{2022}$

$9S=3^2S=3^2+3^4+3^6+...+3^{2024}$

$\Rightarrow 9S-S=3^{2024}-1$

$\Rightarrow S=\frac{3^{2024}-1}{8}$

Đáp án D.

18 tháng 3 2023

Chúng ta có thể sử dụng công thức tổng của dãy số mũ ba để tính tổng này:

1^3 + 2^3 + 3^3 + ... + n^3 = (1 + 2 + 3 + ... + n)^2

Áp dụng công thức này vào đề bài, ta có:

M = (1^3 + 2^3 + 3^3 + ... + 2024^3) = (1 + 2 + 3 + ... + 2024)^2

Do đó, M là bình phương của một số nguyên, vì tổng các số nguyên từ 1 đến 2024 là một số nguyên. Do đó, ta kết luận rằng M thuộc tập số nguyên.

1 tháng 10 2023

A = \(1+4+4^2+4^3+....+4\text{ }^{2004}\)

\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+....+\left(4^{2022}+4^{2023}+4^{2024}\right)\)

\(=21+4^3.\left(1+4+4^2\right)+...+4^{2022}.\left(1+4+4^2\right)\)

\(=21+4^3.21+...+4^{2022}.21\)

\(=21.\left(1+4^3+...+4^{2022}\right)\)

⇒A ⋮ 21

Vậy A ⋮ 21

3 tháng 5 2023

\(A=\dfrac{1}{2}-\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3-\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{2023}-\left(\dfrac{1}{2}\right)^{2024}\)

\(A=\dfrac{2}{2^2}-\dfrac{1}{2^2}+\dfrac{2}{2^4}-\dfrac{1}{2^4}+...+\dfrac{2}{2^{2024}}-\dfrac{1}{2^{2024}}\)

\(A=\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+...+\dfrac{1}{2^{2024}}\)

\(A=\dfrac{2^{2022}}{2^{2024}}+\dfrac{2^{2020}}{2^{2024}}+\dfrac{2^{2018}}{2^{2024}}+...+\dfrac{1}{2^{2024}}\)

\(2^2A=\dfrac{2^{2024}}{2^{2024}}+\dfrac{2^{2022}}{2^{2024}}+\dfrac{2^{2020}}{2^{2024}}+...+\dfrac{2^2}{2^{2024}}\)

\(\Rightarrow4A-A=3A=1-\dfrac{2}{2^{2024}}-\dfrac{1}{2^{2024}}\)

\(3A=1-\left(\dfrac{2}{2^{2024}}+\dfrac{1}{2^{2024}}\right)\)

\(3A=1-\dfrac{3}{2^{2024}}\)

\(A=\dfrac{1-\dfrac{3}{2^{2024}}}{3}\)

\(A=\dfrac{3\left(\dfrac{1}{3}-\dfrac{1}{2^{2024}}\right)}{3}\)

\(A=\dfrac{1}{3}-\dfrac{1}{2^{2024}}\)

3 tháng 5 2023

giúp mk vs các bn. chiều nay mk phải nộp r