Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{1}{1+2+3}\)+\(\dfrac{1}{1+2+3+4}\)+...+ \(\dfrac{1}{1+2+...+2004}\)+ \(\dfrac{2}{2025}\)
A = \(\dfrac{1}{\left(1+3\right).3:2}\)+\(\dfrac{1}{\left(4+1\right).4:2}\)+...+ \(\dfrac{1}{\left(2024+1\right).2024:2}\)+\(\dfrac{2}{2025}\)
A = \(\dfrac{2}{3.4}\)+\(\dfrac{2}{4.5}\)+...+\(\dfrac{2}{2024.2025}\)+ \(\dfrac{2}{2025}\)
A = 2.(\(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\)+...+ \(\dfrac{1}{2024.2025}\)) + \(\dfrac{2}{2025}\)
A = 2.(\(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\)+...+ \(\dfrac{1}{2024}\) - \(\dfrac{1}{2025}\)) + \(\dfrac{2}{2025}\)
A = 2.(\(\dfrac{1}{3}\) - \(\dfrac{1}{2025}\)) + \(\dfrac{2}{2025}\)
A = \(\dfrac{2}{3}\) - \(\dfrac{2}{2025}\) + \(\dfrac{2}{2025}\)
A = \(\dfrac{2}{3}\)
1+1/2.(1+2)+1/3.(1+2+3)+1/4.(1+2+3+4)+...+1/2023.(1+2+3+...+2023)
=1+1/2.(1+2).2/2+1/3.(1+3).3/2+1/4.(1+4).4/2+...+1/2023.(1+2+3+...+2023).2023/2
=2/2+3/2+4/2+...+2023/2
=2+3+4+...+2023/2
=2025.2022/2/2
=1023637,5
\(S=1+3^2+3^4+...+3^{2022}\)
\(3^2S=9S=3^2+3^4+3^6+...+3^{2024}\)
\(S=\dfrac{9S-S}{8}=\left(3^{2024}-1\right):8\)
d, không đáp án nào đúng
Lời giải:
$S=1+3^2+3^4+....+3^{2022}$
$9S=3^2S=3^2+3^4+3^6+...+3^{2024}$
$\Rightarrow 9S-S=3^{2024}-1$
$\Rightarrow S=\frac{3^{2024}-1}{8}$
Đáp án D.
Chúng ta có thể sử dụng công thức tổng của dãy số mũ ba để tính tổng này:
1^3 + 2^3 + 3^3 + ... + n^3 = (1 + 2 + 3 + ... + n)^2
Áp dụng công thức này vào đề bài, ta có:
M = (1^3 + 2^3 + 3^3 + ... + 2024^3) = (1 + 2 + 3 + ... + 2024)^2
Do đó, M là bình phương của một số nguyên, vì tổng các số nguyên từ 1 đến 2024 là một số nguyên. Do đó, ta kết luận rằng M thuộc tập số nguyên.
A = \(1+4+4^2+4^3+....+4\text{ }^{2004}\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+....+\left(4^{2022}+4^{2023}+4^{2024}\right)\)
\(=21+4^3.\left(1+4+4^2\right)+...+4^{2022}.\left(1+4+4^2\right)\)
\(=21+4^3.21+...+4^{2022}.21\)
\(=21.\left(1+4^3+...+4^{2022}\right)\)
⇒A ⋮ 21
Vậy A ⋮ 21
\(A=\dfrac{1}{2}-\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3-\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{2023}-\left(\dfrac{1}{2}\right)^{2024}\)
\(A=\dfrac{2}{2^2}-\dfrac{1}{2^2}+\dfrac{2}{2^4}-\dfrac{1}{2^4}+...+\dfrac{2}{2^{2024}}-\dfrac{1}{2^{2024}}\)
\(A=\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+...+\dfrac{1}{2^{2024}}\)
\(A=\dfrac{2^{2022}}{2^{2024}}+\dfrac{2^{2020}}{2^{2024}}+\dfrac{2^{2018}}{2^{2024}}+...+\dfrac{1}{2^{2024}}\)
\(2^2A=\dfrac{2^{2024}}{2^{2024}}+\dfrac{2^{2022}}{2^{2024}}+\dfrac{2^{2020}}{2^{2024}}+...+\dfrac{2^2}{2^{2024}}\)
\(\Rightarrow4A-A=3A=1-\dfrac{2}{2^{2024}}-\dfrac{1}{2^{2024}}\)
\(3A=1-\left(\dfrac{2}{2^{2024}}+\dfrac{1}{2^{2024}}\right)\)
\(3A=1-\dfrac{3}{2^{2024}}\)
\(A=\dfrac{1-\dfrac{3}{2^{2024}}}{3}\)
\(A=\dfrac{3\left(\dfrac{1}{3}-\dfrac{1}{2^{2024}}\right)}{3}\)
\(A=\dfrac{1}{3}-\dfrac{1}{2^{2024}}\)
\(3A=3+3^2+3^3+...+3^{2025}\)
\(3A-A=3+3^2+3^3+...+3^{2025}-\left(1+3+3^2+...+3^{2024}\right)=-1+3^{2025}\)
\(A=\dfrac{-1+3^{2025}}{2}\)
\(A=1+3+3^2+...+3^{2024}\\ 3A=3+3^2+3^3+...+3^{2025}\\ 3A-A=\left(3+3^2+3^3+...+3^{2025}\right)-\left(1+3+3^2+...+3^{2024}\right)\\ 2A=3^{2025}-1\\ A=\dfrac{3^{2025}-1}{2}\)