Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
1: so sánh 2016/2017+2017/2018
vì 2016/2017 > 1/2017 >1/2018 =
> 2016/2017+2017/2018 >1/2018+2017/2018=1
vậy .....
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(C=\frac{1}{2}+\left(-\frac{2}{3}\right)+\left(-\frac{2}{3}\right)^2+\left(-\frac{2}{3}\right)^3+......+\left(-\frac{2}{3}\right)^{2018}\)
\(\Rightarrow C=\frac{1}{2}-\left(\frac{2}{3}+\left(\frac{2}{3}\right)^2+\left(\frac{2}{3}\right)^3+.....+\left(\frac{2}{3}\right)^{2018}\right)\)
Đặt \(\Rightarrow A=\frac{2}{3}+\left(\frac{2}{3}\right)^2+\left(\frac{2}{3}\right)^3+.....+\left(\frac{2}{3}\right)^{2018}\)
\(\Rightarrow\frac{2}{3}A=\left(\frac{2}{3}\right)^2+\left(\frac{2}{3}\right)^3+\left(\frac{2}{3}\right)^4+.....+\left(\frac{2}{3}\right)^{2019}\)
\(\Rightarrow A-\frac{2}{3}A=\frac{2}{3}-\frac{2}{3}^{2019}\)
\(\Rightarrow\frac{1}{3}A=\frac{2}{3}-\left(\frac{2}{3}\right)^{2019}\)
=> A = \(\left(\frac{2}{3}-\left(\frac{2}{3}\right)^{2019}\right).3\)
=> A = 2 - \(\frac{2^{2019}}{3^{2018}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a=15/(2*5)+15/(5*8)+...+15/(2015*2018)
a=5*[ 3/(2*5)+3/(5*8)+...+3/(2015*2018)]
a=5*[1/2-1/5+1/5-1/8+...+1/2015-1/2018]
a=5*[1/2-1/2018]
a=5*504/1009
a=2520/1009
những cái còn lại tương tự.
cái thứ ba bạn làm tương tự như cái thứ nhất. đặt 2 ra ngoài như mình đặt 5
![](https://rs.olm.vn/images/avt/0.png?1311)
iều kiện để tồn tại x là 2x-1>0
Ta có: |x−1|+|x−3|=2x−1|x−1|+|x−3|=2x−1
⇒[x−1+x−3=2x−1x−1+x−3=−(2x−1)[x−1+x−3=2x−1x−1+x−3=−(2x−1)⇒[x+x−2x=−1+1+3x−1+x−3=−2x+1⇒[2x−2x=3x+x+2x=1+1+3[x+x−2x=−1+1+3x−1+x−3=−2x+1⇒[2x−2x=3x+x+2x=1+1+3⇒[x=34x=4⇒[x=3x=1
![](https://rs.olm.vn/images/avt/0.png?1311)
Mn ơi cho mình hỏi tick kiểu gì ạ mình mới dùng web này nên ko biết
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+.....+\frac{1}{2018}\left(1+2+3+...+2018\right)\)
\(=1+\frac{1}{2}\cdot\frac{2.\left(2+1\right)}{2}+\frac{1}{3}\cdot\frac{3.\left(3+1\right)}{2}+...+\frac{1}{2018}\cdot\frac{2018\left(2018+1\right)}{2}\)
\(=1+\frac{3}{2}+\frac{4}{2}+....+\frac{2019}{2}\)
\(=\frac{2+3+4+...+2019}{2}\)
\(=\frac{\frac{2019\left(2019+1\right)}{2}-1}{2}=1019594.5\)
![](https://rs.olm.vn/images/avt/0.png?1311)
3A = 3 - 3^2 + 3^3 - 3^4 + ... -3^2004 + 3^2005
3A + A = 3 - 3^2 + 3^3 -3^4 + ... -3^2004 + 3^2005 +1 - 3 + 3^2- 3^3 + 3^4 - ....-3^2003+3^2004
4A = 3^2005 + 1
=> 4A - 1 = 3^2005 là lũy thừa của 3 => ĐPCM
Mình có nghe nói là 2 nhà toán học Alfred North Whitehead và Bertrand Russell đã chứng minh 1+1=2 trong quyển Principa Mathemaa (tạm dịch: nền tảng của toán học). Họ đã mất hơn 360 trang để chứng minh điều này. Thầy giáo bạn gãi đầu là phải.
Phép chứng minh này dựa trên một bộ 9 tiên đề về tập hợp gọi tắt là ZFC (Zermelo–Fraenkel). Rất nhiều lý thuyết số học hiện đại dựa trên những tiên đề này. Nếu có người chứng minh được một trong những tiên đề đó là sai (VD: 2 tập hợp có cùng các phần tử mà vẫn không bằng nhau) thì rất có thể dẫn đến 1+1 != 2
\(A=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-...+\frac{1}{3^{2017}}-\frac{1}{3^{2018}}\)
\(\Rightarrow3A=1-\frac{1}{3}+\frac{1}{3^2}-...+\frac{1}{3^{2016}}-\frac{1}{3^{2017}}\)
\(4A=\)\(1-\frac{1}{3^{2018}}\)
\(A=\frac{1}{4}-\frac{1}{3^{2018}.4}\)
bạn ơi còn nx ko bạn hay đáp án là vầy