Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề dài nên T giải câu a thôi bn tự làm tiếp mấy câu khác nhé
2x^2 - 2y^2 - 6x - 6y
= 2(x^2-y^2) - 6(x+ y)
= 2(x-y)(x+y) - 6(x+y)
= (2(x-y)-6) (x+y)
a: \(\dfrac{-6x^3y^4+4x^4y^3}{2x^3y^3}\)
\(=\dfrac{-6x^3y^4}{2x^3y^3}+\dfrac{4x^4y^3}{2x^3y^3}\)
\(=-3y+2x\)
b: \(\dfrac{5x^4y^2-x^3y^2}{x^3y^2}=\dfrac{5x^4y^2}{x^3y^2}-\dfrac{x^3y^2}{x^3y^2}\)
\(=5x-1\)
c: \(\dfrac{27x^3y^5+9x^2y^4-6x^3y^3}{-3x^2y^3}\)
\(=-\dfrac{27x^3y^5}{3x^2y^3}-\dfrac{9x^2y^4}{3x^2y^3}+\dfrac{6x^3y^3}{3x^2y^3}\)
\(=-9xy^2-3y+2x\)
a) \(\dfrac{-6x^3y^4+4x^4y^3}{2x^3y^3}\)
\(=\dfrac{2x^3y^3\cdot\left(-3y+2x\right)}{2x^3y^3}\)
\(=-3y+2x\)
\(=2x-3y\)
b) \(\dfrac{5x^4y^2-x^3y^2}{x^3y^2}\)
\(=\dfrac{5x\cdot x^3y^2-x^3y^2\cdot1}{x^3y^2}\)
\(=\dfrac{x^3y^2\cdot\left(5x-1\right)}{x^3y^2}\)
\(=5x-1\)
c) \(\dfrac{27x^3y^5+9x^2y^4-6x^3y^3}{-3x^2y^3}\)
\(=\dfrac{-3x^2y^3\cdot-9xy^2+-3x^2y^3\cdot-3y+-3x^2y^3\cdot2x}{-3x^2y^3}\)
\(=\dfrac{-3x^2y^3\cdot\left(-9xy^2-3y+2x\right)}{-3x^2y^3}\)
\(=-9xy^2-3x+2x\)
\(a,3x^2-6x\)
\(=3x\left(x-2\right)\)
\(b,18x^2-4x+12\)
\(=2\left(9x^2-2x+6\right)\)
\(c,4x^2\left(2x-y\right)-12x\left(2x-y\right)\)
\(=\left(2x-y\right)\left(4x^2-12x\right)\)
\(=4x\left(2x-y\right)\left(x-3\right)\)
\(d,7\left(x-3y\right)-2y\left(3y-x\right)\)
\(=7\left(x-3y\right)+2y\left(x-3y\right)\)
\(=\left(x-3y\right)\left(2y+7\right)\)
\(f,6\left(x-2y\right)-3\left(2y-x\right)\)
\(=6\left(x-2y\right)+3\left(x-2y\right)\)
\(=\left(x-2y\right)\left(6+3\right)=9\left(x-2y\right)\)
Câu 1 :
\(\left(x-2\right)^2=x^2-4x+4\)
Câu 2:
\(2x^2\left(4x-5x^3\right)+10x^5-5x^3\)
\(=8x^3-10x^5+10x^5-5x^3\)
\(=3x^3\)
\(\left(x-2\right)\left(x^2-2x+4\right)+\left(x-4\right)\left(x-2\right)\)
\(=x^3-4x^2+8x-8+x^2-6x+8\)
\(=x^3-3x^2+2x\)
Còn lại tự làm nha dài lắm
a: \(N=\dfrac{3x^5-4x^4+6x^3}{-2x^2}=-\dfrac{3}{2}x^3+2x^2-3x\)
b: \(N=\dfrac{\left(6x^4y^5-3x^3y^4+\dfrac{1}{2}x^4y^3z\right)}{-\dfrac{1}{3}x^2y^3}=-18x^2y^2+9xy-\dfrac{3}{2}x^2z\)
c: \(\Leftrightarrow N\cdot\left(y-x\right)=\left(x-y\right)^3\)
\(\Leftrightarrow N=\dfrac{\left(x-y\right)^3}{y-x}=-\left(y-x\right)^2\)
d: \(\Leftrightarrow N\cdot\left(y^2-x^2\right)=\left(y^2-x^2\right)^2\)
hay \(N=y^2-x^2\)
\(a,\left(12x^3y^3-3x^2y^3+4x^2y^4\right):6x^2y^3\)
\(=12x^3y^3:6x^2y^3-3x^2y^3:6x^2y^3+4x^2y^4:6x^2y^3\)
\(=2x-\frac{1}{2}+\frac{2}{3}y\)
\(b,\left(6x^3-19x^2+23x-12\right):\left(2x-3\right)\)
\(=\left(6x^3-10x^2+8x-9x^2+15x-12\right):\left(2x-3\right)\)
\(=\left(2x-3\right)\left(3x^2-5x+4\right):\left(2x-3\right)\)
\(=3x^2-5x+4\)