Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 1/1.2.3+1/2.3.4+.....+1/98.99.100
2A = 2/1.2.3+ 2/2.3.4+....+2/98.99.100
Ta có: 2/1.2.3 = 1/1.2 - 1/2.3
Tương tự: 2/2.3.4 = 1/2.3 - 1/3.4
...........2/98.99.100 = 1/98.99 - 1/99.100
2A = 1/1.2 - 1/99.100 = 4949/9900
Vậy A = 4949/9900 : 2 = 4949/19800
Tích nha?
A = 1.2.3 + 2.3.4 + …. + 98.99.100
4A = 4( 1.2.3 + 2.3.4 + …. + 98.99.100)
4A= 1.2.3.4 + 2.3.4.4 +....+98.99.100.4
4A= 1.2.3.4 + 2.3.4 (5-1) +....+98.99.100(101- 97)
4A= 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ....+ 98.99.100.101 - 97.98.99.100
4A= 98.99.100.101
4A=97990200
A= 97990200:4
A=24497550
Vậy.....
Đặt A=1.2.3+2.3.4+...+98.99.100
4A=1.2.3.4+2.3.4.4+...+98.99.100.4
4A=1.2.3.(4-0)+2.3.4.(5-1)+...+98.99.100.(101-97)
4A=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+98.99.100.101-97.98.99.100
4A=(1.2.3.4+2.3.4.5+...+98.99.100.101)-(0.1.2.3+1.2.3.4+...+97.98.99.100)
4A=98.99.100.101-0.1.2.3
4A=98.99.100.101
A=98.99.25.101
A=24497550
Đặt S=1.2.3+2.3.4+...+98.99.100
4S=1.2.3.(4 - 0)+2.3.4.(5 - 1)+...+98.99.100.(101 - 97)
4S=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+98.99.100.101-97.98.99.100
4S=(1.2.3.4+2.3.4.5+...+98.99.100.101) - (0.1.2.3+1.2.3.4+...+97.98.99.100)
4S=98.99.100.101-0.1.2.3
4S=98.99.100.101
S=98.99.25.101
S=24497550
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}\left(\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\)
\(=\frac{1}{2}.\frac{4949}{9900}\)
\(=\frac{4949}{19800}\)
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}\left(\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(=\frac{1}{2}.\frac{4949}{9900}=\frac{4949}{19800}\)
mình làm cách cấp 2
A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ........ + 98.99.(100 - 97)
A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ........ + 98.99.100 - 97.98.99
A = (1.2.3 + 2.3.4 + 3.4.5 + ....... + 98.99.100) - (1.2.3 + 2.3.4 + ..... + 97.98.99)
A = 98.99.100
Đặt A=1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100
4A=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100)4
4A=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)
4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...+98.99.100.101-97.98.99.100
4A=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98.99.100.101
4A=98.99.100.101
=>A=98.99.100.101/4
Ta có :
\(4B=1\times2\times3\times\left(4-0\right)+2\times3\times4\times\left(5-1\right)+3\times4\times5\times\left(6-2\right)+...+98\times99\times100\times\left(101-97\right)\)\(=\left(1\times2\times3\times4+2\times3\times4\times5+.....+98\times99\times100\times101\right)\)\(-\left(0\times1\times2\times3+1\times2\times3\times4+.....+97\times98\times99\times100\right)\)
\(\Rightarrow\frac{98\times99\times100\times101}{4}=24497550\)