Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 11 + 112 + 113 + ... + 117 + 118
= (11 + 112) + (113 + 114) + ... + (117 + 118)
= 11(1 + 11) + 113(1 + 11) + ... + 117(1 + 11)
= 11.12 + 113.12 + .... + 117.12
= 12(11 + 113 + ... + 117) chia hết cho 12
b, 7 + 72 + 73 + 74
= (7 + 73) + (72 + 74)
= 7(1 + 72) + 72(1 + 72)
= 7.50 + 72.50
= 50(7 + 72) chia hết cho 50
c, 3 + 32 + 33 + 34 + 35 + 36
= (3 + 32 + 33) + (34 + 35 + 36)
= 3(1 + 3 + 32) + 34(1 + 3 + 32)
= 3.13 + 34.13
= 13(3 + 34) chia hết cho 13
A=3+3^2 +3^3 +...+3^20
có 3^2+3^3+...+3^20 chia hết cho 9 nên A chia 9 dư 3 vậy A chia hết cho 3 mà ko chia hểt cho 9 nên A ko phải số chính phương
Bạn tính hẳn câu b ra =1143 có tận cùng là 3 nên B ko chính phương
C có tận cùng là 8 nên ko phải chính phương
d tận cùng là 7 nên ko phải số chính phương
E tận cùng là 05 chia hết cho 5 nhưng ko chia hết cho 25 nên E ko phải số chính phương
G có tổng các c/s là 3 nên chia hết cho 3, ko chia hết cho 9 nên ko phải chính phương
Bài 1:
Thấy Sn có (n+1) số hạng trong tổng; VD: s100 có 101 số hạng
* Xét dãy: 2, 3, 4,..., 101
2+3+4+..+101 = (2+101).100/2 = 5150 là tổng các số hạng của S1, S2, .., S100
* Dãy 1, 2, 3,.., 5150 rõ ràng có số hạng thứ 5150 là 5150
nên ta có số hạng cuối cùng trong S100 là 5150
=> S100 = 5050 + 5051 + 5052 + .. + 5150 (có 101 số hạng)
S100 = (5050+5150).101/2 = 515100
~~~~~~~~
giải thích cho lớp 5 dễ hiểu!!!!!
* tính tổng: A = 2+3+4+..+101
=> A = 101 + 100 + .. + 3+2
=> 2A = (2+101) + (3+100) + (4+99) +..+(101+2)
2A = 103 + 103 +..+103 = 103x100
=> A = 103x100 : 2 = 5150
* tổng S100 tính tương tự, chú ý là số hạng sau cùng là 5150 thì trước nó 101 số hạng là số 5150 - 100 = 5050
Bài 2:
a) Số hạng thứ I là : 1.6 ; thứ II là : 2.7 ; thứ III là 3.8 => Số hạng thứ n là n(n + 5).Vậy số hạng thứ 50 là : 50.55 = 2750
a. \(12^2.3^2.2^3=2^4.3^2.3^2.2^3=2^7.3^4\)
b. \(8^3.3^2.6^3=2^9.3^2.2^3.3^3=2^{12}.3^5\)
c. \(5^{32}.5^2=5^{34}\)
d. \(100^6.2^3=\left(2^2.5^2\right)^6.2^3=2^8.5^8.2^3=2^{11}.5^8\)
e. \(100^2:10^2:5^2=\left(10.5.2\right)^2:10^2:5^2=2^2\)
f. \(121^3-11^2=11^6-11^2=11^2\left(11^4-1\right)\)
A=\(\frac{2^{101}-1}{2}\)
B=\(\frac{3^{51}-3^{10}}{2}\)
A= 1+2+2^2+2^3+........+2^100
Ta có :
2A=2 + 2^2 + 2^3+.....+ 2^100
2A=2 + 2^2 + 263 + 2^4 + ... + 2^ 101
2A-A =(2 + 2^2+2^3+2^4+...+2^100)-(2^2+^3+...+2^100)
A= 2