
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



1, 4\(^{x+1}\) + 4\(^0\) = 65
\(\Rightarrow\)4\(^{x+1}\) = 65 - 1
\(\Rightarrow\)x + 1 = 64 : 4
\(\Rightarrow\)x + 1 = 16
\(\Rightarrow\)x = 15
2) 10 + 2x = 16\(^{^2}\): 4\(^3\)
\(\Rightarrow\)10 + 2x = 4
\(\Rightarrow\)2x = 4 - 10
\(\Rightarrow\)2x = -6
\(\Rightarrow\)x = -3

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{10^2}\)
\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}=B\)
\(B=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)
\(B=1-\dfrac{1}{10}< 1\)
\(A< B< 1\Rightarrow A< 1\) => dpcm

Với \(n>2\) ta có: \(\dfrac{n+\left(n+1\right)}{n^2.\left(n+1\right)^2}=\dfrac{1}{n\left(n+1\right)}\left[\dfrac{n}{n\left(n+1\right)}+\dfrac{n+1}{n\left(n+1\right)}\right]=\dfrac{1}{n\left(n+1\right)}\left(\dfrac{1}{n}+\dfrac{1}{n+1}\right)< \dfrac{1}{n\left(n+1\right)}\)
\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)
\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\Rightarrow A< 1-\dfrac{1}{10}< 1\) (đpcm)

\(\frac{1}{2^2}nha\)đề sai đó
\(tacó\)\(D< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)\(< 1\)
do dó D<1

1.
a.Để A là phân số thì n - 5 khác 0 => n khác 5
b.Để A \(\in\)Z thì 3 chia hết cho n - 5 => n - 5 \(\in\) Ư(3) = {1; 3; -1; -3}
Ta có bảng sau:
n - 5 | 1 | -1 | 3 | -3 |
n | 6 | 4 | 8 | 2 |
Vậy n \(\in\){6; 4; 8; 2} thì A \(\in\)Z.

\(\frac{1}{2^2}<\frac{1}{1.2}\);\(\frac{1}{3^2}<\frac{1}{2.3}\);\(\frac{1}{4^2}<\frac{1}{3.4}\);......;\(\frac{1}{10^2}<\frac{1}{9.10}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{10^2}\)<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{9.10}\)
=> A<1-1/10<1
=> A<1

\(D=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)
\(2D=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}\)
\(2D-D=\frac{1}{2}-\frac{1}{10^2}\)
\(D=\frac{10^2\cdot2}{10^2}-\frac{1}{10^2}=\frac{10^2\cdot2-1}{10^2}>1\)

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\) ta có :
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(A< 1-\frac{1}{10}=\frac{9}{10}< 1\)
\(\Rightarrow\)\(A< 1\) ( đpcm )
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}< 1\)
Chúc bạn học tốt ~
ta có \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{10^2}< \frac{1}{9.10}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}< 1\left(đpcm\right)\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{10-9}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}< 1\)