K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
29 tháng 3 2022

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)

\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{10-9}{9.10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}< 1\)

24 tháng 12 2018

1, 4\(^{x+1}\) + 4\(^0\) = 65

\(\Rightarrow\)4\(^{x+1}\) = 65 - 1

\(\Rightarrow\)x + 1      = 64 : 4

\(\Rightarrow\)x + 1      =  16

\(\Rightarrow\)x = 15

24 tháng 12 2018

2) 10 + 2x = 16\(^{^2}\): 4\(^3\)

\(\Rightarrow\)10 + 2x = 4

\(\Rightarrow\)2x = 4 - 10

\(\Rightarrow\)2x = -6

\(\Rightarrow\)x = -3

22 tháng 3 2018

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{10^2}\)

\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}=B\)

\(B=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)

\(B=1-\dfrac{1}{10}< 1\)

\(A< B< 1\Rightarrow A< 1\) => dpcm

NV
13 tháng 1 2024

Với \(n>2\) ta có: \(\dfrac{n+\left(n+1\right)}{n^2.\left(n+1\right)^2}=\dfrac{1}{n\left(n+1\right)}\left[\dfrac{n}{n\left(n+1\right)}+\dfrac{n+1}{n\left(n+1\right)}\right]=\dfrac{1}{n\left(n+1\right)}\left(\dfrac{1}{n}+\dfrac{1}{n+1}\right)< \dfrac{1}{n\left(n+1\right)}\)

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)

\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(\Rightarrow A< 1-\dfrac{1}{10}< 1\) (đpcm)

13 tháng 1 2024

a=23

15 tháng 3 2017

\(\frac{1}{2^2}nha\)đề sai đó

\(tacó\)\(D< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}+\frac{1}{9.10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)\(< 1\)

do dó D<1

15 tháng 3 2017

thank kiu

28 tháng 4 2015

1.

a.Để A là phân số thì n - 5 khác 0 => n khác 5

b.Để A \(\in\)Z thì 3 chia hết cho n - 5 => n - 5 \(\in\) Ư(3) = {1; 3; -1; -3}

Ta có bảng sau:

n - 51-13-3
n6482

Vậy n \(\in\){6; 4; 8; 2} thì A \(\in\)Z.

 

28 tháng 4 2015

2.

\(A=\frac{1}{21}+\frac{1}{22}+....+\frac{1}{40}>\frac{1}{40}.20=\frac{1}{2}\)

\(A=\frac{1}{21}+\frac{1}{22}+....+\frac{1}{40}<\frac{1}{20}.20=1\)

Vậy \(\frac{1}{2}\)< A < 1

8 tháng 3 2015

\(\frac{1}{2^2}<\frac{1}{1.2}\);\(\frac{1}{3^2}<\frac{1}{2.3}\);\(\frac{1}{4^2}<\frac{1}{3.4}\);......;\(\frac{1}{10^2}<\frac{1}{9.10}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{10^2}\)<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{9.10}\)

=> A<1-1/10<1

=> A<1

Vì  giá trị  của D bé hơn 1

18 tháng 3 2018

\(D=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)

\(2D=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}\)

\(2D-D=\frac{1}{2}-\frac{1}{10^2}\)

\(D=\frac{10^2\cdot2}{10^2}-\frac{1}{10^2}=\frac{10^2\cdot2-1}{10^2}>1\)

3 tháng 10 2018

a, 125n=54

53n=53.5

suy ra n=5

3 tháng 10 2018

33n-34=25-5

33n-33.3=27

33(n-3)=27

33(n-3)=33

suy ra n-3=1

n=4

22 tháng 3 2018

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\) ta có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(A< 1-\frac{1}{10}=\frac{9}{10}< 1\)

\(\Rightarrow\)\(A< 1\) ( đpcm ) 

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}< 1\)

Chúc bạn học tốt ~ 

22 tháng 3 2018

ta có \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{10^2}< \frac{1}{9.10}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}< 1\left(đpcm\right)\)