![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(A=\frac{1}{2003.2004}-\frac{1}{2002.2003}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(\Rightarrow-A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2002.2003}+\frac{1}{2003.2004}\)
\(\Rightarrow-A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2002}-\frac{1}{2003}+\frac{1}{2003}-\frac{1}{2004}\)
\(\Rightarrow-A=1-\frac{1}{2004}\)
\(\Rightarrow-A=\frac{2003}{2004}\)
\(\Rightarrow A=\frac{-2003}{2004}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, đề phải là 1/a.(a+1) = 1/a - 1/a+1 chứ bạn !
Có : 1/a.(a+1) = (a+1)-a/a.(a+1) = a+1/a.(a+1) - a/a.(a+1) = 1/a - 1/a+1
=> 1/a.(a+1) = 1/a - 1/a+1
b, Có : 2/a.(a+1).(a+2) = (a+2)-a/a.(a+1).(a+2) = a+2/a.(a+1).(a+2) - a/a.(a+1).(a+2) = 1/a.(a+1) - 1/(a+1).(a+2)
=> 2/a.(a+1).(a+2) = 1/a.(a+1) - 1/(a+1).(a+2)
Tk mk nha
a, \(VP=\frac{1}{a}-\frac{1}{a+1}=\frac{a+1}{a\left(a+1\right)}-\frac{a}{a\left(a+1\right)}==\frac{a+1-a}{a\left(a+1\right)}=\frac{1}{a\left(a+1\right)}=VT\)
b, \(VP=\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}=\frac{a+2}{a\left(a+1\right)\left(a+2\right)}-\frac{a}{a\left(a+1\right)\left(a+2\right)}=\frac{a+2-a}{a\left(a+1\right)\left(a+2\right)}=\frac{2}{a\left(a+1\right)\left(a+2\right)}=VT\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\frac{1}{a\left(a+1\right)}=\frac{\left(a+1\right)-a}{a\left(a+1\right)}=\frac{a+1}{a\left(a+1\right)}-\frac{a}{a\left(a+1\right)}=\frac{1}{a}-\frac{1}{a+1}\)
b) \(\frac{2}{a\left(a+1\right)\left(a+2\right)}=\frac{\left(a+2\right)-a}{a\left(a+1\right)\left(a+2\right)}=\frac{a+2}{a\left(a+1\right)\left(a+2\right)}-\frac{a}{a\left(a+1\right)\left(a+2\right)}\)
\(=\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}\)
a, Ta có : \(\frac{1}{a}-\frac{1}{a+1}=\frac{a+1}{a\left(a+1\right)}-\frac{a}{a\left(a+1\right)}=\frac{a+1-a}{a\left(a+1\right)}\)
\(VT=\frac{1}{a\left(a+1\right)}\left(đpcm\right)\)
b, Ta có : \(\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}=\frac{a+2}{a\left(a+1\right)\left(a+2\right)}-\frac{a}{a\left(a+1\right)\left(a+2\right)}\)
\(VT=\frac{2}{a\left(a+1\right)\left(a+2\right)}\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\frac{1}{a\left(a+1\right)}=\frac{a+1-a}{a\left(a+1\right)}=\frac{a+1}{a\left(a+1\right)}-\frac{a}{a\left(a+1\right)}=\frac{1}{a}-\frac{1}{a+1}\)
b)\(\frac{2}{a\left(a+1\right)\left(a+2\right)}=\frac{a+2-a}{a\left(a+1\right)\left(a+2\right)}=\frac{a+2}{a\left(a+1\right)\left(a+2\right)}-\frac{a}{a\left(a+1\right)\left(a+2\right)}=\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A = 1/2000.2001+1/2001.2002+1/2002.2003 = 2000.20109915 nhé :3