![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Sửa đề:1/1*3+2/3*7+3/7*13+4/13*21+5/21*31
=1/2(2/1*3+4/3*7+6/7*13+8/13*21+10/21*31)
=1/2(1-1/3+1/3-1/7+...+1/21-1/31)
=1/2*30/31=15/31
![](https://rs.olm.vn/images/avt/0.png?1311)
a; C = \(\dfrac{3}{1.3}\) + \(\dfrac{3}{3.5}\) + \(\dfrac{3}{3.7}\) + ... + \(\dfrac{3}{49.51}\)
C = \(\dfrac{3}{2}\).(\(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\) + ... + \(\dfrac{2}{49.51}\))
C = \(\dfrac{3}{2}\).(\(\dfrac{1}{1}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\) + ... + \(\dfrac{1}{49}\) - \(\dfrac{1}{51}\))
C = \(\dfrac{3}{2}\).(\(\dfrac{1}{1}\) - \(\dfrac{1}{51}\))
C = \(\dfrac{3}{2}\).\(\dfrac{50}{51}\)
C = \(\dfrac{25}{17}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{2021\cdot2023}\)
\(A=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\)
\(A=\dfrac{1}{1}-\dfrac{1}{2023}\\ A=\dfrac{2023}{2023}-\dfrac{1}{2023}\\ A=\dfrac{2022}{2023}\)
A=21.3+23.5+...+297.99�=21.3+23.5+...+297.99
A=11−13+13−15+...+197−199�=11−13+13−15+...+197−199
A=11−199�=11−199
A=9899
=
21−51+51−71+....+951−981
=12−198=21−981tự làm tiếp nha ( giống câu a)
![](https://rs.olm.vn/images/avt/0.png?1311)
biểu thức trên = \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}=\frac{100}{101}< 1\)
vậy A<1
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{101.103}\)
=\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{101.103}\right)\)
=\(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{101}-\frac{1}{103}\right)\)
=\(\frac{1}{2}\left(1-\frac{1}{103}\right)\)
=\(\frac{1}{2}.\frac{102}{103}\)
=\(\frac{51}{103}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A = \(\dfrac{1}{1.3}\) + \(\dfrac{1}{3.5}\) + \(\dfrac{1}{5.7}\) + ... + \(\dfrac{1}{101.103}\)
A = \(\dfrac{1}{2}\).(\(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\) + ... + \(\dfrac{2}{101.103}\))
A = \(\dfrac{1}{2}\).(\(\dfrac{1}{1}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\) + ... + \(\dfrac{1}{101}\) - \(\dfrac{1}{103}\))
A = \(\dfrac{1}{2}\).(\(\dfrac{1}{1}\) - \(\dfrac{1}{103}\))
A = \(\dfrac{1}{2}\). \(\dfrac{102}{103}\)
A = \(\dfrac{51}{103}\)
Em ơi thừa số thứ ba phải là \(\dfrac{1}{5.7}\) mới đúng em nhé.
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt 1.3+2.5+3.7+...+20.41 = A ta có :
A = 1.3+2.5+3.7+.......+20.41
A = 1.(2+1) + 2. (3+2) +3.(4+3) +...+ 20.(20+21)
A = 1.2+12 + 2.3+22 + 3.4+32 + ...+ 20.21+202
A = (1.2+ 2.3 + 3.4 + ...+ 20.21) + (12 + 22 +32 +...+ 202)
Đặt 1.2+ 2.3 + 3.4 + ...+ 20.21 = B ta có:
B = 1.2+ 2.3 + 3.4 + ...+ 20.21
3B = (1.2+ 2.3 + 3.4 + ...+ 20.21)3
3B = 1.2.3+ 2.3.3 + 3.4.3 + ...+ 20.21.3
3B = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + ... + 20.21.(22-19)
3B = 1.2.3 + 2.3.4 -1.2.3 + 3.4.5 - 2.3.4 +...+ 20.21.22 - 19.20.21
3B = 20.21.22
B = 9240 : 3
B = 3080
Đặt (12 + 22 +32 +...+ 202) = C ta có :
C = 12 + 22 +32 +...+ 202
C = 1.1 + 2.2 + 3.3 + ... + 20.20
C = 1.(2-1) + 2.(3-1) + 3.(4-1) + ... + 20.(21-1)
C = 1.2-1+ 2.3-2 + 3.4-3 + ...+ 20.21-20
C = (1.2+ 2.3 + 3.4 + ...+ 20.21) - (1+2+3+...+20)
Mà 1.2+ 2.3 + 3.4 + ...+ 20.21 = B = 3080
=> C = 3080 - (1+2+3+...+20)
C = 3080 - [(20+1) . 20 :2]
C = 3080 -210
C = 2870
Mà A = B + C => A = 3080 + 2870 => A = 5950
=>A=1/2.(2/1.3+4/3.7+6/7.13+...+20/91.111)
=>A=1/2.(3-1/1.3+7-3/3.7+13-7/7.13+...+111-91/91.111)
=>A=1/2.(1-1/3+1/3-1/7+1/7-1/13+...+1/91-1/111)
=>A=1/2.(1-1/111)
=>A=1/2.100/111
=>A=50/111
T*ck cho mìn nhóe!!!