Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A,\left(a^6\right)^4.a^{12}=a^{24}.a^{12}=a^{36}\)
\(B,5^6:5^3+3^3.3^2=5^3+3^5=125+243=368\)
Tìm X
\(A,\left(x-1\right)^3=125=5^3\)
\(x-1=5\)
\(\Rightarrow x=6\)
\(B,720:\left[41-\left(2x-5\right)\right]=2^3.5=40\)
\(\Leftrightarrow41-\left(2x-5\right)=\frac{720}{40}=18\)
\(\Leftrightarrow2x-5=23\)
\(\Leftrightarrow x=\frac{28}{2}=14\)
\(A=2^0+2^1+2^2+.....+2^{1990}\)
\(2A=2\left(2^0+2^1+2^2+.....+2^{1990}\right)\)
\(2A=2^1+2^2+2^3+.....+2^{1991}\)
\(2A-A=\left(2^1+2^2+2^3+.....+2^{1991}\right)-\left(2^0+2^1+2^2+.....+2^{1990}\right)\)
\(A=2^{1991}-2^0=2^{1991}-1\)
\(B=a^0+a^1+a^2+a^3+.....+a^n\)
\(B.a=a^1+a^2+a^3+a^4+.....+a^{n+1}\)
\(B.a-B=\left(a^1+a^2+a^3+a^4+......+a^{n+1}\right)-\left(a^0+a^1+a^2+a^3+.....+a^n\right)\)
\(B.a=a^{n+1}-1\Leftrightarrow B=\dfrac{a^{n+1}-1}{a}\)
\(C=1+3+3^2+.....+3^{50}\)
\(3C=3\left(1+3+3^2+.....+3^{50}\right)\)
\(3C=3+3^2+3^3+.....+3^{51}\)
\(3C-C=\left(3+3^2+3^3+.....+3^{51}\right)-\left(1+3+3^2+.....+3^{50}\right)\)
\(2C=3^{51}-1\Rightarrow C=\dfrac{3^{51}-1}{2}\)
Đáp án là :
a. 1 + a + a^2 + a^3 + ... + a^n
\(=\frac{a^{n+1}-1}{a-1}\)
b. 1^3 + 2^3 + 3^3 + ... + n^3
\(=\left(1+2+3+...+n\right)^2\)