\(^2\) + 2\(^3\)+ ... + 2\(^{100...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2020

a) đặt \(M=1+2^2+2^3+...+2^{100}\)

\(\Rightarrow2M=2+2^3+2^4+...+2^{101}\)

\(\Rightarrow2M-M=\left(2+2^3+2^4+...+2^{101}\right)-\left(1+2^2+2^3+...+2^{100}\right)\)

\(\Rightarrow M=2-1+2^{101}=1+2^{101}\)

b) đặt \(N=2+2^2+2^3+...+2^{100}\)

\(\Rightarrow2N=4+2^3+2^4+...+2^{101}\)

\(\Rightarrow2N-N=\left(4+2^3+2^4+...+2^{101}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)

\(\Rightarrow N=4-2-2^2+2^{101}=-2+2^{101}\)

28 tháng 9 2019

bài 1 mifk viết sai nha.

bài 1: cho A=1+3+3\(^2\)+3\(^3\)+...+3\(^{10}\).Tìm số tự nhiên n biết 2 x A + 1 = 3\(^n\)

29 tháng 9 2019

B1:

\(A=1+3+3^2+3^3+...+3^{10}\\ 3A=3+3^2+3^3+3^4+...+3^{11}\\ 3A-A=3^{11}-1\\ \Rightarrow A=\frac{3^{11}-1}{2}\)

mấy câu khác tương tự nha

1 tháng 5 2018

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}< 2\left(đpcm\right)\)

13 tháng 7 2018

\(a,A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2017}}+\dfrac{1}{2^{2018}}\)

\(3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2016}}+\dfrac{1}{3^{2017}}\)

\(3A-A=1-\dfrac{1}{3^{2018}}\)

\(A=\dfrac{\left(1-\dfrac{1}{3^{2018}}\right)}{2}\)

\(b,B=1+5+5^2+5^3+...+5^{100}\)

\(5B=5+5^2+5^3+5^4+...+5^{100}+5^{101}\)

\(5B-B=1-5^{101}\)

\(B=\dfrac{\left(1-5^{101}\right)}{4}\)

8 tháng 6 2020

a) A = 20 + 21 + 22 + .... + 22010

2A = 2(20 + 21 + 22 + .... + 22010)

2A = 21 + 22 + 23 + .... + 22011

A = (21 + 22 + 23 + .... + 22011) - (20 + 21 + 22 + .... + 22010)

A = 22011 - 20

A = 22011 - 1

b) B = 1 + 3 + 32 + .... + 3100

3B = 3(1 + 3 + 32 + .... + 3100)

3B = 3 + 32 + 33 + .... + 3101

2B = (3 + 32 + 33 + .... + 3101) - (1 + 3 + 32 + .... + 3100)

2B = 3101 - 1

B = (3101 - 1) : 2

c) C = 4 + 42 + 43 + .... + 4n

4C = 4(4 + 42 + 43 + .... + 4n)

4C = 42 + 43 + 44 .... + 4n + 1

3C = (42 + 43 + 44 .... + 4n + 1) - (4 + 42 + 43 + .... + 4n)

3C = 4n + 1 - 4

C = (4n + 1 - 4) : 3

d) D = 1 + 5 + 52 + .... + 52000

5D = 5(1 + 5 + 52 + .... + 52000)

5D = 5 + 52 + 53 + .... + 52001

4D = (5 + 52 + 53 + .... + 52001) - (1 + 5 + 52 + .... + 52000)

4D = 52001 - 1

4D = (52001 - 1) : 4

23 tháng 4 2017

Ai trả lời giúp mik nha

12 tháng 3 2017

Bài 2:

Ta có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};....;\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\Rightarrow A< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}=1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=2-\dfrac{1}{100}< 2\)

Vậy A < 2

Bài 3:

D = \(\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right)....\left(1-\dfrac{1}{2015}\right)\)

\(=\dfrac{1}{2}.\dfrac{2}{3}......\dfrac{2014}{2015}\)

\(=\dfrac{1.2......2014}{2.3......2015}=\dfrac{1}{2015}\)

Bài 4:

A = \(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}......\dfrac{899}{900}\)

\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}........\dfrac{29.31}{30.30}\)

\(=\dfrac{1.2.3......29}{2.3.4.......30}.\dfrac{3.4.5......31}{2.3.4.....30}\)

\(=\dfrac{1}{30}.\dfrac{31}{2}=\dfrac{31}{60}\)