Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{98}+\left(\dfrac{1}{2}\right)^{99}\)
\(\Rightarrow2B=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{97}+\left(\dfrac{1}{2}\right)^{98}\)
\(\Rightarrow2B-B=1-\left(\dfrac{1}{2}\right)^{99}\)
\(B=1-\left(\dfrac{1}{2}\right)^{99}\)
\(2,\)
\(a,\dfrac{45^{10}.2^{10}}{75^{15}}\)
\(=\dfrac{5^{10}.9^{10}.2^{10}}{25^{15}.3^{15}}\)
\(=\dfrac{5^{10}.3^{20}.2^{10}}{5^{30}.3^{15}}\)
\(=\dfrac{5^{10}.3^{15}.\left(3^5.2^{10}\right)}{5^{10}.3^{15}.\left(5^{20}\right)}\)
\(=\dfrac{3^5.2^{10}}{5^{20}}\)
\(b,\dfrac{2^{15}.9^4}{6^3.8^3}\)
\(=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)
\(c,\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{4^{10}.2^{10}+4^{10}}{4^4.2^4+4^4.4^7}=\dfrac{4^4.\left(4^6.2^{10}+4^6\right)}{4^4.\left(2^4+4^7\right)}\)
\(=\dfrac{4^{11}+4^6}{4^8.4^7}=\dfrac{4^6.\left(4^5+1\right)}{4^6.\left(4^2-4\right)}=\dfrac{1024+1}{16-4}=\dfrac{1025}{12}\)
\(d,\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)
\(3,\)
\(a,\left(2x+4\right)^2=\dfrac{1}{4}\)
\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2=\left(\dfrac{-1}{2}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x+4=\dfrac{1}{2}\\2x+4=\dfrac{-1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{1}{2}-4=\dfrac{-7}{2}\\2x=\dfrac{-1}{2}-4=\dfrac{-9}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-7}{4}\\x=\dfrac{-9}{4}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{-7}{4};\dfrac{-9}{4}\right\}\)
\(b,\left(2x-3\right)^2=36\)
\(\left(2x-3\right)^2=6^2=\left(-6\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=6+3=9\\2x=-6+3=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=\dfrac{-3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{9}{2};\dfrac{-3}{2}\right\}\)
\(c,5^{x+2}=628\)
\(5^{x+2}=5^4\)
\(\Rightarrow x+2=4\)
\(\Rightarrow x=4-2=2\)
Vậy \(x=2\)
\(d,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)
\(\Rightarrow\left(x-1\right)^{x+4}-\left(x-1\right)^{x+2}=0\)
\(\Rightarrow\left(x-1\right)^{x+2}.\left[\left(x-1\right)^2-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^2-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x-1=1\\x-1=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)
Vậy \(x\in\left\{0;1;2\right\}\)
Bài 1:
B= \(\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{99}\)
2B= \(2.[\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{99}]\)
2B= \(1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{98}\)
⇒2B-B= \(1-\left(\dfrac{1}{2}\right)^{99}\)
B= 1
Vậy B=1
Bài 2:
a, \(\dfrac{45^{10}.2^{10}}{75^{15}}\)= \(\dfrac{\left(3^2.5\right)^{10}.2^{10}}{\left(3.5^2\right)^{15}}=\dfrac{3^{20}.5^{10}.2^{10}}{3^{15}.5^{30}}=\dfrac{3^5.2^{10}}{5^{20}}\)
b, \(\dfrac{2^{15}.9^4}{6^3.8^3}=\dfrac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^3.\left(2^3\right)^3}=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)
c,\(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2.4\right)^{10}+4^{10}}{\left(2.4\right)^4+4^{11}}=\dfrac{2^{10}.4^{10}+4^{10}}{2^4.4^4+4^{11}}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6+4^6.4^5}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(4^5+1\right)}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(2^{10}+1\right)}=4^4=256\)
d, \(\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{\left(3^4\right)^{11}.3^{17}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)
Bài 3:
a, \(\left(2x+4\right)^2=\dfrac{1}{4}\)
\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2\)
\(2x+4=\dfrac{1}{2}\)
\(2x=\dfrac{1}{2}-4\)
\(2x=-\dfrac{7}{2}\)
\(x=-\dfrac{7}{2}:2\)
\(x=-\dfrac{7}{2}.\dfrac{1}{2}\)
\(x=-\dfrac{7}{4}\)
b, \(\left(2x-3\right)^2=36\)
\(\left(2x-3\right)^2=6^2\)
\(2x-3=6\)
\(2x=9\)
\(x=\dfrac{9}{2}\)
c, \(5^{x+2}=625\)
\(5^{x+2}=5^4\)
\(x+2=4\)
\(x=2\)
1) Theo định nghĩa về căn bậc 2 số học thì đáp án là \(\sqrt{5^2}; \sqrt{(-5)^2}\)
2) Tập $Q$ là tập những số thực biểu diễn được dưới dạng \(\frac{a}{b}\) (a,b tự nhiên, $b$ khác $0$), tập $I$ là tập những số thực không biểu diễn được dạng như trên.
\(0,15=\frac{3}{20}\in\mathbb{Q}\) , A sai.
$\sqrt{2}$ là một số vô tỉ (tính chất quen thuộc), B sai.
$C$ hiển nhiên đúng, theo định nghĩa.
Do đó áp án đúng là C.
3)
a) \(-\sqrt{x}=(-7)^2=49\)
\(\Rightarrow \sqrt{x}=-49\) (vô lý, vì căn bậc 2 số học của một số là một số không âm , trong khi đó $-49$ âm)
Do đó pt vô nghiệm.
b) \(\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=-2<0\)
Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm
Vậy pt vô nghiệm.
c) \(5\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=\frac{-2}{5}<0\)
Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm
Vậy pt vô nghiệm.
d) \(\sqrt{2x-1}=29\Rightarrow 2x-1=29^2=841\Rightarrow x=\frac{841+1}{2}=421\)
e)\(x^2=0\Rightarrow x=\pm \sqrt{0}=0\)
g) \((x-1)^2=1\frac{9}{16}=\frac{25}{16}\)
\(\Rightarrow x-1=\pm \sqrt{\frac{25}{16}}=\pm \frac{5}{4}\)
\(\Rightarrow \left[\begin{matrix} x=\frac{9}{4}\\ x=\frac{-1}{4}\end{matrix}\right.\)
h) \(\sqrt{3-2x}=1\Rightarrow 3-2x=1^2=1\Rightarrow x=\frac{3-1}{2}=1\)
f) \(\sqrt{x}-x=0\Rightarrow \sqrt{x}=x\Rightarrow x=x^2\)
\(\Rightarrow x(1-x)=0\Rightarrow \left[\begin{matrix} x=0\\ x=1\end{matrix}\right.\)
Áp dụng tính chất:\(|A|\ge0\)(Dấu "=" xảy ra khi và chỉ khi A=0)
Ta có\(A\ge0+0+0=0\)
Suy ra để A nhỏ nhát \(\Leftrightarrow\hept{\begin{cases}7x-5y=0\Rightarrow7x=5y\Rightarrow\frac{x}{5}=\frac{y}{7}\Rightarrow\frac{x}{10}=\frac{y}{14}\left(1\right)\\2z-3x=0\Rightarrow2z=3x\Rightarrow\frac{z}{3}=\frac{x}{2}\Rightarrow\frac{z}{15}=\frac{x}{10}\left(2\right)\\xy+yz+xz-2000=0\Rightarrow xy+yz+xz=2000\left(3\right)\end{cases}}\)
Từ (1) và (2)
\(\Rightarrow\frac{x}{10}=\frac{y}{14}=\frac{z}{15}=k\left(k\inℤ\right)\)
\(\Rightarrow\hept{\begin{cases}x=10k\\y=14k\\z=15k\end{cases}}\left(4\right)\)
Thay (4) vào (3)
\(\Rightarrow10k14k+14k15k+10k15k=2000\)
\(\Rightarrow140k^2+210k^2+150k^2=2000\)
\(\Rightarrow500k^2=2000\Rightarrow k^2=4=2^2=\left(-2\right)^2\)
Lần lượt thay K ta tìm đc các giá trị của x,y,z
Vậy ...
a: \(A=\dfrac{\dfrac{3}{8}-\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}}{\dfrac{-5}{8}+\dfrac{5}{10}-\dfrac{5}{11}-\dfrac{5}{12}}+\dfrac{\dfrac{3}{2}+\dfrac{3}{3}-\dfrac{3}{4}}{\dfrac{5}{2}+\dfrac{5}{3}-\dfrac{5}{4}}\)
\(=\dfrac{-3}{5}+\dfrac{3}{5}=0\)
b: \(=3^4-\left(-8\right)^2-\left(-25\right)^2\)
\(=81-64-625=-608\)
c: \(=2^3+3\cdot1\cdot\dfrac{1}{4}\cdot4+\left[4:\dfrac{1}{2}\right]:8\)
\(=8+3+4\cdot2:8=11+1=12\)
3. S= -1/6 + -1/20 + 1/10 + 1/6
=0
4. A= -1 -1 -1 -1 -.... -1 [ có (50-2): 2 +1 = 25 số -1)
=-25
a, Tổng A có 11 số hạng
( Nhìn từ 21 đến 210 thấy được 10 số, thêm số 1 nữa => 11 số hạng )
b,
\(A=1+2^1+2^2+...+2^9+2^{10}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{10}+2^{11}\)
Ta có \(2A-A=\left(2+2^2+...+2^{11}\right)-\left(1+2^1+..+2^{10}\right)\)
\(\Leftrightarrow\)\(A\)\(=2^{11}-1\)
mà \(2^{11}-1< 2^{11}\)
hay \(A< 2^{11}\)
`@` `\text {Ans}`
`\downarrow`
`a,`
Số hạng của tổng A là:
`(10 - 1) \div 1 + 1 + 1 = 11 (\text {số hạng})`
`b,`
`A = 1+2^1+2^2+2^3+...+2^9+2^10`
`2A = 2(1+2+2^2+...+2^9+2^10)`
`2A = 2+2^2+2^3+...+2^10+2^11`
`2A - A = (2+2^2+2^3+...+2^10+2^11) - (1+2^1+2^2+2^3+...+2^9+2^10)`
`A = 2^11 - 1`
Vì `2^11 - 1 < 2^11`
`-> A < 2^11`
Vậy:
`a,` `11` số hạng *Mình dùng lũy thừa để tính á cậu;-;*
`b,` `A < 2^11.`