\(2^1\) + \(2^2\)\(2^3\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2023

a, Tổng A có 11 số hạng

( Nhìn từ 21 đến 210 thấy được 10 số, thêm số 1 nữa => 11 số hạng )

b, 

\(A=1+2^1+2^2+...+2^9+2^{10}\)

\(\Rightarrow2A=2+2^2+2^3+...+2^{10}+2^{11}\)

Ta có \(2A-A=\left(2+2^2+...+2^{11}\right)-\left(1+2^1+..+2^{10}\right)\)

\(\Leftrightarrow\)\(A\)\(=2^{11}-1\)

mà \(2^{11}-1< 2^{11}\)

hay \(A< 2^{11}\)

`@` `\text {Ans}`

`\downarrow`

`a,`

Số hạng của tổng A là:

`(10 - 1) \div 1 + 1 + 1 = 11 (\text {số hạng})` 

`b,`

`A = 1+2^1+2^2+2^3+...+2^9+2^10`

`2A = 2(1+2+2^2+...+2^9+2^10)`

`2A = 2+2^2+2^3+...+2^10+2^11`

`2A - A = (2+2^2+2^3+...+2^10+2^11) - (1+2^1+2^2+2^3+...+2^9+2^10)`

`A = 2^11 - 1`

Vì `2^11 - 1 < 2^11`

`-> A < 2^11`

Vậy:

`a,` `11` số hạng *Mình dùng lũy thừa để tính á cậu;-;*

`b,` `A < 2^11.`

Bài 1:Tính:a,\(\sqrt{\left(a-2\right)^2}\)với a\(\ge\)2b,\(\sqrt{\left(a+10\right)^2}\)với a<-10c,\(\sqrt{\left(3-a\right)^2}\)(a\(\in\)R)Bài 2;Tìm x để:a,\(\sqrt{x}\)=1/2b,\(\sqrt{x+7}\)=4c,\(\sqrt{2x-1}\)=1/3d,\(\sqrt{x+1}\)=0e,\(\sqrt{x-3}\)+2=0f,\(\sqrt{2x}\)+3=9Bài 3:Cho A=\(\sqrt{x^2+y^2-2z^2}\).Tính giá trị A khi x=\(\sqrt{5}\),y=2,z=0Bài 4:So sánh:a,\(4\frac{8}{33}\)và 3\(\sqrt{2}\)b,5.\(\sqrt{\left(-10\right)^2}\) và 10.\(\sqrt{\left(-5\right)^2}\)Bài 5:Không...
Đọc tiếp

Bài 1:Tính:

a,\(\sqrt{\left(a-2\right)^2}\)với a\(\ge\)2

b,\(\sqrt{\left(a+10\right)^2}\)với a<-10

c,\(\sqrt{\left(3-a\right)^2}\)(a\(\in\)R)

Bài 2;Tìm x để:

a,\(\sqrt{x}\)=1/2

b,\(\sqrt{x+7}\)=4

c,\(\sqrt{2x-1}\)=1/3

d,\(\sqrt{x+1}\)=0

e,\(\sqrt{x-3}\)+2=0

f,\(\sqrt{2x}\)+3=9

Bài 3:Cho A=\(\sqrt{x^2+y^2-2z^2}\).Tính giá trị A khi x=\(\sqrt{5}\),y=2,z=0

Bài 4:So sánh:

a,\(4\frac{8}{33}\)và 3\(\sqrt{2}\)

b,5.\(\sqrt{\left(-10\right)^2}\) và 10.\(\sqrt{\left(-5\right)^2}\)

Bài 5:Không dùng bảng số liệu máy tính hãy so sánh:

a.\(\sqrt{26}+\sqrt{17}\) và 9

b,\(\sqrt{8}-\sqrt{5}\) và 1

c,\(\sqrt{63-27}\) và \(\sqrt{63}-\sqrt{27}\)

Bài 6:Hãy so sánh A và B

A=\(\sqrt{225}-\frac{1}{\sqrt{5}}\)-1

B=\(\sqrt{196}-\frac{1}{\sqrt{6}}\) 

Bài 7:a,CHo M=\(\frac{\sqrt{x}-1}{2}\).Tìm x\(\in\)Z và x<50 để m có giá trị nguyên

         b,Cho P=\(\frac{9}{\sqrt{5}-5}\).Tìm x\(\in\)Z để P có giá trị nguyên

Bài 8:cho P=1/4+2\(\sqrt{x-3}\);Q=9.3.\(\sqrt{x-2}\)

a,Tìm GTNN của P

b,Tìm giá trị lớn nhất của Q

Bài 8:Cho biểu thức :A=|x-1/2|+3/4-x

a,rút gọn A

b,Tìm GTNN của A

Baif9:Cho biểu thức:B=0,(21)-x-?x-0,(4)|

a,Rút gọn B

b,Tìm GTLN của B

Bài 10:So sánh:

a,0,55(56) và 0,5556

b,-1/7 và -0,1428(57)

c,\(2\frac{2}{3}\)và 2,67

d,-7/6 và 1,16667

e,0,(31) và 0,3(11)

      Mn cố gắng giúp mk hết,mình cảm ơn nhìu.Ai xong trước mk tick cho:))

6
3 tháng 2 2019

các bạn giúp mk để mk ăn tết cho zui

3 tháng 2 2019

luong thuy anh giúp mk vs

16 tháng 10 2018

\(B=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{98}+\left(\dfrac{1}{2}\right)^{99}\)

\(\Rightarrow2B=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{97}+\left(\dfrac{1}{2}\right)^{98}\)

\(\Rightarrow2B-B=1-\left(\dfrac{1}{2}\right)^{99}\)

\(B=1-\left(\dfrac{1}{2}\right)^{99}\)

\(2,\)

\(a,\dfrac{45^{10}.2^{10}}{75^{15}}\)

\(=\dfrac{5^{10}.9^{10}.2^{10}}{25^{15}.3^{15}}\)

\(=\dfrac{5^{10}.3^{20}.2^{10}}{5^{30}.3^{15}}\)

\(=\dfrac{5^{10}.3^{15}.\left(3^5.2^{10}\right)}{5^{10}.3^{15}.\left(5^{20}\right)}\)

\(=\dfrac{3^5.2^{10}}{5^{20}}\)

\(b,\dfrac{2^{15}.9^4}{6^3.8^3}\)

\(=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)

\(c,\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{4^{10}.2^{10}+4^{10}}{4^4.2^4+4^4.4^7}=\dfrac{4^4.\left(4^6.2^{10}+4^6\right)}{4^4.\left(2^4+4^7\right)}\)

\(=\dfrac{4^{11}+4^6}{4^8.4^7}=\dfrac{4^6.\left(4^5+1\right)}{4^6.\left(4^2-4\right)}=\dfrac{1024+1}{16-4}=\dfrac{1025}{12}\)

\(d,\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)

\(3,\)

\(a,\left(2x+4\right)^2=\dfrac{1}{4}\)

\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2=\left(\dfrac{-1}{2}\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}2x+4=\dfrac{1}{2}\\2x+4=\dfrac{-1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{1}{2}-4=\dfrac{-7}{2}\\2x=\dfrac{-1}{2}-4=\dfrac{-9}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-7}{4}\\x=\dfrac{-9}{4}\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{-7}{4};\dfrac{-9}{4}\right\}\)

\(b,\left(2x-3\right)^2=36\)

\(\left(2x-3\right)^2=6^2=\left(-6\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=6+3=9\\2x=-6+3=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=\dfrac{-3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{9}{2};\dfrac{-3}{2}\right\}\)

\(c,5^{x+2}=628\)

\(5^{x+2}=5^4\)

\(\Rightarrow x+2=4\)

\(\Rightarrow x=4-2=2\)

Vậy \(x=2\)

\(d,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)

\(\Rightarrow\left(x-1\right)^{x+4}-\left(x-1\right)^{x+2}=0\)

\(\Rightarrow\left(x-1\right)^{x+2}.\left[\left(x-1\right)^2-1\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^2-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^2=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x-1=1\\x-1=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)

Vậy \(x\in\left\{0;1;2\right\}\)

16 tháng 10 2018

Bài 1:

B= \(\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{99}\)

2B= \(2.[\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{99}]\)

2B= \(1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{98}\)

⇒2B-B= \(1-\left(\dfrac{1}{2}\right)^{99}\)

B= 1

Vậy B=1

Bài 2:

a, \(\dfrac{45^{10}.2^{10}}{75^{15}}\)= \(\dfrac{\left(3^2.5\right)^{10}.2^{10}}{\left(3.5^2\right)^{15}}=\dfrac{3^{20}.5^{10}.2^{10}}{3^{15}.5^{30}}=\dfrac{3^5.2^{10}}{5^{20}}\)

b, \(\dfrac{2^{15}.9^4}{6^3.8^3}=\dfrac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^3.\left(2^3\right)^3}=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)

c,\(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2.4\right)^{10}+4^{10}}{\left(2.4\right)^4+4^{11}}=\dfrac{2^{10}.4^{10}+4^{10}}{2^4.4^4+4^{11}}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6+4^6.4^5}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(4^5+1\right)}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(2^{10}+1\right)}=4^4=256\)

d, \(\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{\left(3^4\right)^{11}.3^{17}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)

Bài 3:

a, \(\left(2x+4\right)^2=\dfrac{1}{4}\)

\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2\)

\(2x+4=\dfrac{1}{2}\)

\(2x=\dfrac{1}{2}-4\)

\(2x=-\dfrac{7}{2}\)

\(x=-\dfrac{7}{2}:2\)

\(x=-\dfrac{7}{2}.\dfrac{1}{2}\)

\(x=-\dfrac{7}{4}\)

b, \(\left(2x-3\right)^2=36\)

\(\left(2x-3\right)^2=6^2\)

\(2x-3=6\)

\(2x=9\)

\(x=\dfrac{9}{2}\)

c, \(5^{x+2}=625\)

\(5^{x+2}=5^4\)

\(x+2=4\)

\(x=2\)

1/Trong các số:\(\sqrt{\left(-5\right)^2}\);\(\sqrt{5^2}\);\(-\sqrt{\left(-5\right)^2}\);\(-\sqrt{5^2}\)căn bậc hai số học của 25 là............... 2/Kết quả nào đúng:A/0,15∈I , B/\(\sqrt{2}\in Q\) , C/\(\dfrac{3}{5}\in R\) , D/Ba kết quả trên đều sai 3/Tìm x,biết:a/\(-\sqrt{x}=\left(-7\right)^2\) b/\(\sqrt{x+1}+2=0\) c/\(5\sqrt{x+1}+2=0\) d/\(\sqrt{2x-1}=29\) e/\(x^2=0,81\) ...
Đọc tiếp

1/Trong các số:\(\sqrt{\left(-5\right)^2}\);\(\sqrt{5^2}\);\(-\sqrt{\left(-5\right)^2}\);\(-\sqrt{5^2}\)căn bậc hai số học của 25 là...............

2/Kết quả nào đúng:A/0,15∈I , B/\(\sqrt{2}\in Q\) , C/\(\dfrac{3}{5}\in R\) , D/Ba kết quả trên đều sai

3/Tìm x,biết:a/\(-\sqrt{x}=\left(-7\right)^2\) b/\(\sqrt{x+1}+2=0\) c/\(5\sqrt{x+1}+2=0\) d/\(\sqrt{2x-1}=29\)

e/\(x^2=0,81\) g/\(\left(x-1\right)^2=1\dfrac{9}{16}\) h/\(\sqrt{3-2x}=1\) f/\(\sqrt{x}-x=0\)

4/Cho A=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\).CMR với x=\(\dfrac{16}{9}\) và x=\(\dfrac{25}{9}\) thì A có giá trị là số nguyên.

5/Tính:a/\(\sqrt{m^2}\) với \(m\ge0?\) b/\(\sqrt{m^2}\) với \(m< 0\)

6/Tính \(x^2\),biết rằng:\(\sqrt{3x}=9\)?

7/Tính:\(\left(x-3\right)^2\) biết rằng:\(\sqrt{x-3}=2\)?

8/Tính:a/\(2\sqrt{a^2}\) với \(a\ge0\) b/\(\sqrt{3a^2}\) với a<0 c/\(5\sqrt{a^4}\) với a<0 d/\(\dfrac{1}{3}\sqrt{c^6}\)với c<0

9/So sánh:A=\(\dfrac{25}{49}\) ; B=\(\dfrac{\sqrt{5^2}+\sqrt{25^2}}{\sqrt{7^2}+\sqrt{49^2}}\) ; C=\(\sqrt{\dfrac{5^2}{7^2}}\) ; D=\(\dfrac{\sqrt{5^2}-\sqrt{25^2}}{\sqrt{7^2}-\sqrt{49^2}}\)

10/Cho P=\(-2019+2\sqrt{x}\) và Q=\(0,6-2\sqrt{x+3}\) a/Tìm GTNN của P? b/Tìm GTLN của Q?

11/Cho B=\(\dfrac{\sqrt{x+1}}{\sqrt{x-3}}\).Tìm số nguyên x để B có giá trị là một số nguyên?

12/a/Trong các giá trị của a là \(3,-4,0,10,-5\) giá trị thỏa mãn đẳng thức\(\sqrt{a^2}=a\)

b/Trong các giá trị của a là \(2,-6,0,1,-5\) giá trị thỏa mãn đẳng thức \(\sqrt{a^2}=|x|\)

6
AH
Akai Haruma
Giáo viên
31 tháng 7 2018

1) Theo định nghĩa về căn bậc 2 số học thì đáp án là \(\sqrt{5^2}; \sqrt{(-5)^2}\)

2) Tập $Q$ là tập những số thực biểu diễn được dưới dạng \(\frac{a}{b}\) (a,b tự nhiên, $b$ khác $0$), tập $I$ là tập những số thực không biểu diễn được dạng như trên.

\(0,15=\frac{3}{20}\in\mathbb{Q}\) , A sai.

$\sqrt{2}$ là một số vô tỉ (tính chất quen thuộc), B sai.

$C$ hiển nhiên đúng, theo định nghĩa.

Do đó áp án đúng là C.

AH
Akai Haruma
Giáo viên
31 tháng 7 2018

3)

a) \(-\sqrt{x}=(-7)^2=49\)

\(\Rightarrow \sqrt{x}=-49\) (vô lý, vì căn bậc 2 số học của một số là một số không âm , trong khi đó $-49$ âm)

Do đó pt vô nghiệm.

b) \(\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=-2<0\)

Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm

Vậy pt vô nghiệm.

c) \(5\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=\frac{-2}{5}<0\)

Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm

Vậy pt vô nghiệm.

d) \(\sqrt{2x-1}=29\Rightarrow 2x-1=29^2=841\Rightarrow x=\frac{841+1}{2}=421\)

e)\(x^2=0\Rightarrow x=\pm \sqrt{0}=0\)

g) \((x-1)^2=1\frac{9}{16}=\frac{25}{16}\)

\(\Rightarrow x-1=\pm \sqrt{\frac{25}{16}}=\pm \frac{5}{4}\)

\(\Rightarrow \left[\begin{matrix} x=\frac{9}{4}\\ x=\frac{-1}{4}\end{matrix}\right.\)

h) \(\sqrt{3-2x}=1\Rightarrow 3-2x=1^2=1\Rightarrow x=\frac{3-1}{2}=1\)

f) \(\sqrt{x}-x=0\Rightarrow \sqrt{x}=x\Rightarrow x=x^2\)

\(\Rightarrow x(1-x)=0\Rightarrow \left[\begin{matrix} x=0\\ x=1\end{matrix}\right.\)

23 tháng 5 2020

hầy :)) bạn chăm chỉ gõ đống latex này thiệt :vv

23 tháng 5 2020

cảm ơn bạn

Áp dụng tính chất:\(|A|\ge0\)(Dấu "=" xảy ra khi và chỉ khi A=0)

Ta có\(A\ge0+0+0=0\)

Suy ra để A nhỏ nhát \(\Leftrightarrow\hept{\begin{cases}7x-5y=0\Rightarrow7x=5y\Rightarrow\frac{x}{5}=\frac{y}{7}\Rightarrow\frac{x}{10}=\frac{y}{14}\left(1\right)\\2z-3x=0\Rightarrow2z=3x\Rightarrow\frac{z}{3}=\frac{x}{2}\Rightarrow\frac{z}{15}=\frac{x}{10}\left(2\right)\\xy+yz+xz-2000=0\Rightarrow xy+yz+xz=2000\left(3\right)\end{cases}}\)

Từ (1) và (2)

\(\Rightarrow\frac{x}{10}=\frac{y}{14}=\frac{z}{15}=k\left(k\inℤ\right)\)

\(\Rightarrow\hept{\begin{cases}x=10k\\y=14k\\z=15k\end{cases}}\left(4\right)\)

Thay (4) vào (3)

\(\Rightarrow10k14k+14k15k+10k15k=2000\)

\(\Rightarrow140k^2+210k^2+150k^2=2000\)

\(\Rightarrow500k^2=2000\Rightarrow k^2=4=2^2=\left(-2\right)^2\)

Lần lượt thay K ta tìm đc các giá trị của x,y,z

Vậy ...

a: \(A=\dfrac{\dfrac{3}{8}-\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}}{\dfrac{-5}{8}+\dfrac{5}{10}-\dfrac{5}{11}-\dfrac{5}{12}}+\dfrac{\dfrac{3}{2}+\dfrac{3}{3}-\dfrac{3}{4}}{\dfrac{5}{2}+\dfrac{5}{3}-\dfrac{5}{4}}\)

\(=\dfrac{-3}{5}+\dfrac{3}{5}=0\)

b: \(=3^4-\left(-8\right)^2-\left(-25\right)^2\)

\(=81-64-625=-608\)

c: \(=2^3+3\cdot1\cdot\dfrac{1}{4}\cdot4+\left[4:\dfrac{1}{2}\right]:8\)

\(=8+3+4\cdot2:8=11+1=12\)

5 tháng 7 2017

3. S= -1/6 + -1/20 + 1/10 + 1/6

=0

4. A= -1 -1 -1 -1 -.... -1 [ có (50-2): 2 +1 = 25 số -1)

=-25