Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Tổng C có số số hạng là :
( 20 - 1 ) : 1 + 1 = 20 ( số )
Ta thấy \(20⋮2\)nên khi ta nhóm 2 số lại thì sẽ không có số nào bị thừa cả
Ta có :
\(C=2009+2009^2+2009^3+......+2009^{20}\)
\(C=\left(2009+2009^2\right)+\left(2009^3+2009^4\right)+.....+\left(2009^{19}+2009^{20}\right)\)
\(C=1.\left(1+2009\right)+2009^3.\left(1+2009\right)+......+2009^{19}.\left(1+2009\right)\)
\(C=1.2010+2009^3.2010+.....+2009^{19}.2010\)
\(C=2010.\left(1+2009^3+....+2009^{19}\right)\)
Vậy \(C⋮2010\left(ĐPCM\right)\)
b) Gọi số cần tìm là : a \(\left(a\ne0;a\inℤ\right)\)
Vì a chia cho 5 dư 3 nên \(a-3⋮5\)suy ra \(a-3+5⋮5\Rightarrow a+2⋮5\)
Vì a chia cho 6 dư 4 nên \(a-4⋮6\)suy ra \(a-4+6⋮6\Rightarrow a+2⋮6\)
Vì a chia cho 7 dư 5 nên \(a-5⋮7\)suy ra \(a-5+7⋮7\Rightarrow a+2⋮7\)
Vì \(\hept{\begin{cases}a+2⋮5\\a+2⋮6\\a+2⋮7\end{cases}\Rightarrow a+2\in BC\left(5;6;7\right)}\)
Vì a phải là nhỏ nhất nên \(a+2\in BCNN\left(5;6;7\right)\)
Vì \(\left(5;6;7\right)=1\)nên \(BCNN\left(5;6;7\right)=5.6.7=210\)
\(\Rightarrow a+2=210\)
\(\Rightarrow a=210-2\)
\(\Rightarrow a=208\)
Vậy \(a=208\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(b)\) Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(\frac{2009^{2010}-2}{2009^{2011}-2}< \frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\frac{2009^{2010}+2009}{2009^{2011}+2009}=\frac{2009\left(2009^{2009}+1\right)}{2009\left(2009^{2010}+1\right)}=\frac{2009^{2009}+1}{2009^{2010}+1}\)
Vậy \(\frac{2009^{2009}+1}{2009^{2010}+1}>\frac{2009^{1010}-2}{2009^{2011}-2}\)
Chúc bạn học tốt ~
Àk mình còn thiếu một điều kiện nữa xin lỗi nhé :
Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
Bạn thêm vào nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=1+2+2^2+...+2^{99}\)
\(2A=2+2^2+2^3+2^{100}\)
\(2A-A=\left(2+2^2+...+2^{100}\right)-\left(1+2+...+2^{99}\right)\)
\(A=2^{100}-1< 2^{100}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
ta có: 2009A= (2009^2010+ 2009)/ (2009^2010+1)= (2009^10+1+2008)/(2009^2010+1)=1+ [2008/(2009^2010+1)]
làm tương tự như trên ta được :
2009B=1-[4016/(2009^2011-2)]
lại có:
2009A= .............(nt) > 1
2009B=...........<1
=>2009A>2009B
=>A>B
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a)\) Ta có :
\(\frac{1}{100}A=\frac{100^{2009}+1}{100^{2009}+100}=\frac{100^{2009}+100}{100^{2009}+100}-\frac{99}{100^{2009}+100}=1-\frac{99}{100^{2009}+100}\)
\(\frac{1}{100}B=\frac{100^{2010}+1}{100^{2010}+100}=\frac{100^{2010}+100}{100^{2010}+100}-\frac{99}{100^{2010}+100}=1-\frac{99}{100^{2010}+100}\)
Vì \(\frac{99}{100^{2009}+100}>\frac{99}{100^{2010}+100}\) nên \(1-\frac{99}{100^{2009}+100}< 1-\frac{99}{100^{2010}+100}\)
Do đó :
\(\frac{1}{100}A< \frac{1}{100}B\)\(\Rightarrow\)\(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 4:
Gọi số cần tìm là a
Ta có a chia cho 3;5;7 có số dư lần lượt là 1;2;3 với a nhỏ nhất
Ta thấy nếu (a+2) thì chia hết cho 3;5;7
=> a+2 = BCNN(3;5;7)
Do đó a+2=3.5.7=105
Vậy a=103
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 20+ 21+22+...+22010
A= 20+ 21+22+...+22010
2A= 2( 20+ 21+22+...+22010)
2A= 21+22+...+22010+22011
2A-A= (21+22+...+22010+22011) -(20+ 21+22+...+22010)
A= 22011-20
A= 22011-1
Vì 22011 > 22010 nên 22011 -1 > 22010-1
Vậy..
c)1030 = ( 103 )10 = 100010
= ( 210 )10 = 102410
Vì 1024 > 1000
=> 100010 < 102410 hay 1030 < 2100
A= ( 1+ 2+ 2^2) + 2 x (2^2+2^3+2^4)+.....+2^2006 x (2^2+2^3+2^4)
A=7+2 x 28+.....+2^2006 x 28
A = 7 + 28 (2 + 2^4 +....+2^2006)
do 7 chia hết 7 và 28 x ( 2 + 2^4 +...+2^2006) chia hết 7
suy ra A chia hết 7