\(^2\)+ ... + 2\(^{2009}\)+ 2
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2020

A = 1 + 2 + 22 + ... + 22009 + 22010

= ( 1 + 2 + 22 ) + ( 23 + 24 + 25 ) + ... + ( 22008 + 22009 + 22010 )

= 7 + 23( 1 + 2 + 22 ) + ... + 22008( 1 + 2 + 22 )

= 7 + 23.7 + ... + 22008.7

= 7( 1 + 23 + ... + 22008 ) chia hết cho 7

hay A chia 7 dư 0

21 tháng 12 2020

Ta có A  = 1 + 2 + 22 + ... + 22009 + 22010

=> A - 3 = 22 + 23 + 24 + 25 + 26 + 27 + .... +  22008 + 22009 + 22010

             = (22 + 23 + 24) + (25 + 26 + 27) + .... +  (22008 + 22009 + 22010)

             = 22(1 + 2 + 22) + 25(1 + 2 + 22) + ... + 22008(1 + 2 + 22)

             = (1 + 2 + 22)(22 + 25 + ... + 22008

             = 7(22 + 25 + ... + 22008\(⋮\)7

Vì \(A-3⋮7\)

=> A : 7 dư 3

Vậy A : 7 dư 3

27 tháng 3 2018

a) Tổng C có số số hạng là :

( 20 - 1 ) : 1 + 1 = 20 ( số )

Ta thấy \(20⋮2\)nên khi ta nhóm 2 số lại thì sẽ không có số nào bị thừa cả 

Ta có :

 \(C=2009+2009^2+2009^3+......+2009^{20}\)

\(C=\left(2009+2009^2\right)+\left(2009^3+2009^4\right)+.....+\left(2009^{19}+2009^{20}\right)\)

\(C=1.\left(1+2009\right)+2009^3.\left(1+2009\right)+......+2009^{19}.\left(1+2009\right)\)

\(C=1.2010+2009^3.2010+.....+2009^{19}.2010\)

\(C=2010.\left(1+2009^3+....+2009^{19}\right)\)

Vậy \(C⋮2010\left(ĐPCM\right)\)

b) Gọi số cần tìm là : a \(\left(a\ne0;a\inℤ\right)\)

Vì a chia cho 5 dư 3 nên \(a-3⋮5\)suy ra \(a-3+5⋮5\Rightarrow a+2⋮5\)

Vì a chia cho 6 dư 4 nên \(a-4⋮6\)suy ra \(a-4+6⋮6\Rightarrow a+2⋮6\)

Vì a chia cho 7 dư 5 nên \(a-5⋮7\)suy ra \(a-5+7⋮7\Rightarrow a+2⋮7\)

Vì \(\hept{\begin{cases}a+2⋮5\\a+2⋮6\\a+2⋮7\end{cases}\Rightarrow a+2\in BC\left(5;6;7\right)}\)

Vì a phải là nhỏ nhất nên \(a+2\in BCNN\left(5;6;7\right)\)

Vì \(\left(5;6;7\right)=1\)nên \(BCNN\left(5;6;7\right)=5.6.7=210\)

\(\Rightarrow a+2=210\)

\(\Rightarrow a=210-2\)

\(\Rightarrow a=208\)

Vậy \(a=208\)

28 tháng 3 2018

a=208

9 tháng 3 2018

\(b)\)  Ta có công thức : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(\frac{2009^{2010}-2}{2009^{2011}-2}< \frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\frac{2009^{2010}+2009}{2009^{2011}+2009}=\frac{2009\left(2009^{2009}+1\right)}{2009\left(2009^{2010}+1\right)}=\frac{2009^{2009}+1}{2009^{2010}+1}\)

Vậy \(\frac{2009^{2009}+1}{2009^{2010}+1}>\frac{2009^{1010}-2}{2009^{2011}-2}\)

Chúc bạn học tốt ~

9 tháng 3 2018

Àk mình còn thiếu một điều kiện nữa xin lỗi nhé : 

Ta có công thức : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)

Bạn thêm vào nhé 

19 tháng 10 2017

A=2^100-1

suy ra A<2^100

19 tháng 10 2017

mk cần gấp lắm rồi

19 tháng 10 2017

\(A=1+2+2^2+...+2^{99}\)

\(2A=2+2^2+2^3+2^{100}\)

\(2A-A=\left(2+2^2+...+2^{100}\right)-\left(1+2+...+2^{99}\right)\)

\(A=2^{100}-1< 2^{100}\)

27 tháng 1 2019

1.

ta có: 2009A= (2009^2010+ 2009)/ (2009^2010+1)= (2009^10+1+2008)/(2009^2010+1)=1+ [2008/(2009^2010+1)]

làm tương tự như trên ta được :

2009B=1-[4016/(2009^2011-2)]

lại có:

2009A= .............(nt) > 1

2009B=...........<1

=>2009A>2009B

=>A>B

27 tháng 1 2019

câu 2 và 3 thì làm sao bạn

4 tháng 4 2018

\(a)\) Ta có : 

\(\frac{1}{100}A=\frac{100^{2009}+1}{100^{2009}+100}=\frac{100^{2009}+100}{100^{2009}+100}-\frac{99}{100^{2009}+100}=1-\frac{99}{100^{2009}+100}\)

\(\frac{1}{100}B=\frac{100^{2010}+1}{100^{2010}+100}=\frac{100^{2010}+100}{100^{2010}+100}-\frac{99}{100^{2010}+100}=1-\frac{99}{100^{2010}+100}\)

Vì \(\frac{99}{100^{2009}+100}>\frac{99}{100^{2010}+100}\) nên \(1-\frac{99}{100^{2009}+100}< 1-\frac{99}{100^{2010}+100}\)

Do đó : 

\(\frac{1}{100}A< \frac{1}{100}B\)\(\Rightarrow\)\(A< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

9 tháng 12 2014

Bài dễ nhưng bạn nên hỏi từng câu một

3 tháng 2 2015

Bài 4:

Gọi số cần tìm là a

Ta có a chia cho 3;5;7 có số dư lần lượt là 1;2;3 với a nhỏ nhất

Ta thấy nếu (a+2) thì chia hết cho 3;5;7

=> a+2 = BCNN(3;5;7)

Do đó a+2=3.5.7=105

Vậy a=103

 

17 tháng 2 2020

a) 20+ 21+22+...+22010

A=  20+ 21+22+...+22010

2A= 2( 20+ 21+22+...+22010)

2A= 21+22+...+22010+22011

2A-A= (21+22+...+22010+22011) -(20+ 21+22+...+22010)

A= 22011-20

A= 22011-1

Vì 22011 > 22010 nên 22011 -1 > 22010-1

Vậy..

c)1030  = ( 103 )10 = 100010

= ( 210 )10 = 102410

Vì 1024 > 1000 

=>  100010 < 102410 hay 1030 < 2100