Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\cdot...\cdot\left(1-\frac{1}{2015}\right)=\frac{1}{2}\cdot\frac{2}{3}\cdot...\cdot\frac{2014}{2015}=\frac{1\cdot2\cdot3\cdot...\cdot2014}{2\cdot3\cdot...\cdot2014\cdot2015}=\frac{1}{2015}\)
=1/2 x 2/3 x 3/4 x 4/5 x 5/6 x.....x2013/2014 - 2014/2015
=1/2014 - 2014/2015
=1/2015
a.\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2015}\right)=\frac{1}{2}.\frac{2}{3}...\frac{2014}{2015}=\frac{1.2.3...2014}{2.3...2015}=\frac{1}{2015}\)
b.\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{128}-\frac{1}{256}=1-\frac{1}{256}=\frac{255}{256}\)
c.\(\frac{5}{2}+\frac{5}{4}+\frac{5}{8}+...+\frac{5}{256}=5\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\right)=5.\frac{255}{256}=\frac{1275}{256}\)
d.14,35+(13,7-13,6).1=14,35+0,1.1=14,35+0,1=14,45
\(a)\) \(S=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)
\(S=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
\(3S=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\)
\(3S-S=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\right)\)
\(2S=3+\frac{1}{3^7}\)
\(2S=\frac{3^8+1}{3^7}\)
\(S=\frac{3^8+1}{3^7}.\frac{1}{2}\)
\(S=\frac{3^8+1}{2.3^7}\)
Vậy \(S=\frac{3^8+1}{2.3^7}\)
Chúc bạn học tốt ~
A = \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2015}\right)\)
A = \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{2014}{2015}\)
A = \(\frac{1}{2015}\)