Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{99}}{a_{100}}=\frac{a_{100}}{a_1}\) chứ!
\(\dfrac{a_1-1}{100}=\dfrac{a_2-2}{99}=\dfrac{a_3-3}{98}=....=\dfrac{a_{100}-100}{1}\\ =\dfrac{a_1-1+a_2-2+a_3-3+....+a_{100}-100}{1+2+....+100}\\ =\dfrac{\left(a_1+a_2+....+a_{100}\right)-\left(1+2+3+....+100\right)}{5050}=\dfrac{10100-5050}{5050}\\ =\dfrac{5050}{5050}=1\\ \Leftrightarrow a_{100}-100=1\\ \Leftrightarrow a_{100}=101\)
Bài 1:
-Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
a1aa1−1100=a2−299=a3−398=...=a100−1001a1−1100=a2−299=a3−398=...=a100−1001
Bạn công tất cả các số lại sẽ ra.
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{100}}{a_1}=\frac{a_1+a_2+...+a_{100}}{a_1+a_2+...+a_{100}}=1\)\(\Rightarrow\)\(a_1=a_2=...=a_{100}\)
\(\Rightarrow\)\(M=\frac{a_1^2+a_2^2+a_3^2+...+a_{100}^2}{\left(a_1+a_2+a_3+...+a_{100}\right)^2}=\frac{100a_1^2}{100^2a_1^2}=\frac{1}{100}\)
Ta thấy : \(a_1+a_2+a_3+.....+a_{2015}+a_1=1008.1=1008\)
Mà \(a_1+a_2+a_3+......+a_{2015}=0\)
\(\Rightarrow a_1+\left(a_1+a_2+a_3+....+a_{2015}\right)=1008\Leftrightarrow a_1+0=1008\) \(\Rightarrow a_1=1008\)
\(a_1+a_2+a_3+..+a_{2015}=0\)\(0\)
\(\Rightarrow\left(a_1+a_2\right)+...+\left(a_1+a_{2015}\right)\)\(=\frac{\left(2015-1\right)}{2}+1=1008\)
\(\Rightarrow a_1+\left(a_1+a_2+..+a_{2015}\right)=1008\)
\(\Rightarrow a_1=1008\)
Ta có:
\(a_1+a_2+...+a_{2015}=0\)
\(\Leftrightarrow\left(a_1+a_2\right)+\left(a_3+a_4\right)+...+\left(a_{2013}+a_{2014}\right)+\left(a_{2015}+a_1\right)-a_1=0\)
\(\Leftrightarrow1+1+...+1-a_1=0\)
\(\Leftrightarrow1008-a_1=0\)
\(\Leftrightarrow a_1=1008\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có;
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2018}}{a_{2019}}=\frac{a_1+a_2+...+a_{2018}}{a_2+a_3+...+a_{2019}}\)(1)
Ta có:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2018}}{a_{2019}}\Rightarrow\frac{a_1^{2018}}{a_2^{2018}}=\frac{a_1^{2018}}{a_2^{2018}}=\frac{a_2^{2018}}{a_3^{2018}}=...=\frac{a_{2018}^{2018}}{a_{2019}^{2018}}=\frac{a_1\cdot a_2\cdot...a_{2018}}{a_2\cdot a_3\cdot...\cdot a_{2019}}=\frac{a_1}{a_{2019}}\)(2)
Từ (1) và (2) suy ra
\(\frac{a_1^{2018}}{a_2^{2018}}=\frac{a_2^{2018}}{a_3^{2018}}=...=\frac{a_{2018}^{2018}}{a_{2019}^{2018}}=\left(\frac{a_1+a_2+...+a_{2018}}{a_2+a_3+...+a_{2019}}\right)^{2018}\)(3)
Từ (1), (2), (3) suy ra điều phải chứng minh
mọi người ơi giúp mình với mình sắp phải nộp rồi
giúp em đi ạ