Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Để đường thẳng (d) đi qua gốc tạo đô \(\Leftrightarrow\hept{\begin{cases}m=0\\m-2\ne0\end{cases}}\)\(\Leftrightarrow m=0\)
b) Đường thẳng (d) đi qua điểm A(2;5) nên ta có:
\(5=2\left(m-2\right)+m\)
\(\Leftrightarrow2m-4+m=5\)
\(\Leftrightarrow3m=9\Leftrightarrow m=3\)

Câu 1:
a: \(P=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x+15}{x-9}\cdot\dfrac{\sqrt{x}+3}{3}\)
\(=\dfrac{-3\sqrt{x}+15}{\sqrt{x}-3}\cdot\dfrac{1}{3}=\dfrac{-\sqrt{x}+5}{\sqrt{x}-3}\)
b: Thay \(x=11-6\sqrt{2}\) vào P, ta được:
\(P=\dfrac{-\left(3-\sqrt{2}\right)+5}{3-\sqrt{2}-3}=\dfrac{-3+\sqrt{2}+5}{-\sqrt{2}}\)
\(=\dfrac{2-\sqrt{2}}{-\sqrt{2}}=-\sqrt{2}+1\)

a. ĐKXĐ : x>1.
b. \(A=\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{1}{\sqrt{x}-1}=\left[\dfrac{4}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right].\left(\sqrt{x}-1\right)=\dfrac{4+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)=\dfrac{4+x}{\sqrt{x}}\)
c. Thay \(x=4-2\sqrt{3}\) vào A, ta có:
\(A=\dfrac{4+4-2\sqrt{3}}{\sqrt{4-2\sqrt{3}}}=\dfrac{8-2\sqrt{3}}{\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{8-2\sqrt{3}}{\sqrt{3}-1}=\dfrac{\left(8-2\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}=\dfrac{8\sqrt{3}+8-6-2\sqrt{3}}{2}=\dfrac{2+6\sqrt{3}}{2}=\dfrac{2\left(1+3\sqrt{3}\right)}{2}=1+3\sqrt{3}\)
Vậy giá trị của A tại \(x=4-2\sqrt{3}\) là \(1+3\sqrt{3}\).

Hàm số y = (m-1 )x +2 có phần hệ số a = m-1 , b = 2
Hàm số y = 3x +1 có phần hệ số a' = 3 , b' = 1
Để hàm số y = ( m -1)x +2 song song với hàm số y = x+3 thì
\(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\Rightarrow m-1=3\Rightarrow m=4\)
Vậy...
b, Để đồ thị đi qua điểm M(2;-2) \(\Leftrightarrow-2=\left(m-1\right).2+2\)
\(\Leftrightarrow2m-2+2=-2\)
\(\Leftrightarrow m=-1\)

x^2 + 1/x^2 \(\ge\)2 ( AM-GM )
Mà x^2 + 1/x^2 = 2
=> x^4 = 1 => x = 1 hoặc -1

Bài 1:
a: Để hàm số đồng biến thì a>0
Để hàm số nghịch biến thì a<0
b: Để hai đường vuôg góc thì a*1=-1
=>a=-1
Bài 2:
PTHĐGĐ là:
1/4x^2=2x+m-4
=>x^2=8x+4m-16
=>x^2-8x-4m+16=0
Δ=(-8)^2-4(-4m+16)
=64+16m-64=16m
Để (P) cắt (d) tại hai điểm phân biệt thì 16m>0
=>m>0
A=36 x m
=> m=41,04/36=1,14
Vay m=1,14