Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(x^3-9x^2+6x+16=x^3-8x^2-x^2+8x-2x+16\)
\(=x^2\left(x-8\right)-x\left(x-8\right)-2\left(x-8\right)=\left(x-8\right)\left(x^2-x-2\right)=\left(x-8\right)\left(x-2\right)\left(x+1\right)\)
d) \(2x^3+3x^2+3x+1=\left(2x+1\right)\left(x^2+x+1\right)\)
e) \(2x^3-5x^2+5x-3=\left(2x-3\right)\left(x^2-x+1\right)\)
Tìm x
a) ( x - 1 )^3 + 1 + 3x( x - 4 ) = 0
b) x^3 - 6x^2 + 9x = 0
giúp mình với mình cần gấp
mình cảm ơn
b) \(x^3-6x^2+9x=0\)
\(\Leftrightarrow x.\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow x.\left(x-3\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Vậy \(x=0\)hoặc \(x=3\)
a. ( x - 1 )3 + 1 + 3x ( x - 4 ) = 0
<=> x3 - 3x2 + 3x - 1 + 1 + 3x2 - 12x = 0
<=> x3 - 9x = 0
<=> x ( x2 - 9 ) = 0
<=> \(\orbr{\begin{cases}x=0\\x^2-9=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}\)
b. x3 - 6x2 + 9x = 0
<=> x ( x2 - 6x + 9 ) = 0
<=> x ( x - 3 )2 = 0
<=> \(\orbr{\begin{cases}x=0\\\left(x-3\right)^2=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
( 3x - 1 )( x + 3 ) + 9x2 - 1 = 0
<=> 3x2 + 9x - x - 3 + 9x2 - 1 = 0
<=> 12x2 + 8x - 4 = 0
<=> 4( 3x2 + 2x - 1 ) = 0
<=> 3x2 + 2x - 1 = 0
<=> 3x2 + 3x - x - 1 = 0
<=> ( 3x2 + 3x ) - ( x + 1 ) = 0
<=> 3x( x + 1 ) - 1( x + 1 ) = 0
<=> ( 3x - 1 )( x + 1 ) = 0
<=> \(\orbr{\begin{cases}3x-1=0\\x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{3}\\x=-1\end{cases}}\)
Vậy S = { 1/3 ; -1 }
\(\frac{x+1}{3}>\frac{3x-2}{5}\)
\(\Leftrightarrow\frac{5\left(x+1\right)}{15}>\frac{3\left(3x-2\right)}{15}\)
\(\Leftrightarrow5x+5>9x-6\)
\(\Leftrightarrow5x-9x>-6-5\)
\(\Leftrightarrow-4x>-11\)
\(\Leftrightarrow x< \frac{11}{4}\)
Bài làm:
a) \(\left(3x-1\right)\left(x+3\right)+9x^2-1=0\)
\(\Leftrightarrow3x^2+8x-3+9x^2-1=0\)
\(\Leftrightarrow12x^2+8x-4=0\)
\(\Leftrightarrow3x^2+2x-1=0\)
\(\Leftrightarrow\left(3x^2+3x\right)-\left(x+1\right)=0\)
\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-1\end{cases}}\)
Vậy tập nghiệm của PT \(S=\left\{-1;\frac{1}{3}\right\}\)
b) \(\frac{x+1}{3}>\frac{3x-2}{5}\Leftrightarrow\frac{5\left(x+1\right)}{15}>\frac{3\left(3x-2\right)}{15}\)
\(\Rightarrow5x+5>9x-6\)
\(\Leftrightarrow4x< 11\)
\(\Rightarrow x< \frac{11}{4}\)
\(\left(x^2+x\right)^2-2x^2-2x-15\)
\(=\left(x^2+x\right)^2-\left(2x^2+2x+15\right)\)
\(=\left(x^2+x\right)^2-\left[\left(2x^2+2x\right)+15\right]\)
\(=\left(x^2+x\right)^2-\left[2.\left(x^2+x\right)+15\right]\)
\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-15\) \(\left(1\right)\)
đặt \(x^2+x=t\)
\(\left(1\right)\)\(=\) \(t^2-2t-15\)
\(=\left(t-1\right)^2-16\)
\(=\left(t-1-4\right)\left(t-1+4\right)\)
\(=\left(t-5\right)\left(t+3\right)\)
thay \(t=x^2+x\) ta có
\(\left(1\right)=\left(x^2+x-5\right)\left(x^2+x+3\right)\)
các câu còn lại tương tự nha
học tốt
(3x-2) (9x+6x+4)-(3x-1) (9x+3x+1)=x-4
(3x - 2)(15x + 4) - (3x - 1)(12x + 1) = x - 4
<=> 45x2 + 12x - 30x - 8 - (36x2 + 3x - 12x - 1) - x + 4 = 0
<=> 9x2 - 10x - 3 = 0
<=> (3x - \(\frac{5}{3}\))2 = \(\frac{52}{9}\) => \(\orbr{\begin{cases}3x-\frac{5}{3}=\frac{2\sqrt{13}}{3}\\3x-\frac{5}{3}=-\frac{2\sqrt{13}}{3}\end{cases}}\) <=> \(\orbr{\begin{cases}x=\frac{5+2\sqrt{13}}{9}\\x=\frac{5-2\sqrt{13}}{9}\end{cases}}\)
Vậy ...