Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mấy bài dễ tự làm nhé:D
1)
Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\\\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\end{matrix}\right.\)
Ta có điều phải chứng minh
\(\left\{{}\begin{matrix}\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\\\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\end{matrix}\right.\)
Ta có điều phải chứng minh
\(\dfrac{72-x}{7}=\dfrac{x-4}{9}\)
\(\Rightarrow9\left(72-x\right)=7\left(x-4\right)\)
\(\Rightarrow648-9x=2x-28\)
\(\Rightarrow11x-28=648\)
\(\Rightarrow11x=676\Rightarrow x=\dfrac{676}{11}\)
\(\dfrac{37-x}{x+13}=\dfrac{3}{7}\)
\(\Rightarrow7\left(37-x\right)=3\left(x+13\right)\)
\(\Rightarrow259-7x=3x+39\)
\(\Rightarrow10x+39=259\)
\(\Rightarrow10x=220\Rightarrow x=22\)
\(\dfrac{x+4}{20}=\dfrac{5}{x+4}\)
\(\Rightarrow\left(x+4\right)^2=100\)
\(\Rightarrow\left(x+4\right)^2=\pm10^2\)
\(\Rightarrow\left[{}\begin{matrix}x+4=10\Rightarrow x=6\\x+4=-10\Rightarrow x=-14\end{matrix}\right.\)
\(\dfrac{x-1}{x+2}=\dfrac{x-2}{x+3}\)
\(\Rightarrow\left(x-1\right)\left(x+3\right)=\left(x-2\right)\left(x+2\right)\)
\(\Rightarrow x\left(x+3\right)-1\left(x+3\right)=x\left(x+2\right)-2\left(x+2\right)\)
\(\Rightarrow x^2+3x-x-3=x^2+2x-2x-4\)
\(\Rightarrow x^2+2x-3=x^2-4\)
\(\Rightarrow2x-3=-4\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=-\dfrac{1}{2}\)
a) \(\dfrac{12}{\left(-2\right)^n}=\dfrac{-12}{8}\)
\(\Rightarrow12.8=\left(-2\right)^n.\left(-12\right)\)
\(\Rightarrow96=\left(-2\right)^n.\left(-12\right)\)
\(\Rightarrow\left(-2\right)^n=\dfrac{96}{-12}\)
\(\Rightarrow\left(-2\right)^n=-8\)
\(\Rightarrow\left(-2\right)^n=\left(-2\right)^3\)
\(\Rightarrow n=3\)
Vậy \(n=3\)
2)
a) \(\dfrac{4}{9}\) và \(\dfrac{5}{8}\) Mẫu chung: 72
\(\dfrac{4}{9}=\dfrac{4.8}{72}=\dfrac{32}{72}\)
\(\dfrac{5}{8}=\dfrac{5.9}{72}=\dfrac{45}{72}\)
Vì \(\dfrac{32}{72}< \dfrac{45}{72}\)
Vậy \(\dfrac{4}{9}< \dfrac{5}{8}\)
b) \(-\sqrt{\dfrac{4}{9}}\) và \(\dfrac{-3}{4}\) MTC: 12
\(-\sqrt{\dfrac{4}{9}}=-\sqrt{\left(\dfrac{2}{3}\right)^2}=-\dfrac{2}{3}=\dfrac{-2.4}{12}=\dfrac{-8}{12}\)
\(-\dfrac{3}{4}=\dfrac{-3.3}{12}=\dfrac{-9}{12}\)
Vì \(\dfrac{-8}{12}>\dfrac{-9}{12}\)
Vậy \(-\sqrt{\dfrac{4}{9}}>\dfrac{-3}{4}\)
\(\sqrt{\dfrac{1}{9}}\cdot\sqrt{0.81}+\sqrt{0.09}\)
=\(\dfrac{1}{3}\cdot\dfrac{3}{10}+\dfrac{3}{10}\)
=\(\dfrac{1}{10}+\dfrac{3}{10}\)
=\(\dfrac{2}{5}\)
\(f\left(x\right)=4x^2+3x+1\)
\(g\left(x\right)=3x^2-2x+1.\)
a) \(h\left(x\right)=f\left(x\right)-g\left(x\right)\)
\(\Rightarrow h\left(x\right)=\left(4x^2+3x+1\right)-\left(3x^2-2x+1\right)\)
\(\Rightarrow h\left(x\right)=4x^2+3x+1-3x^2+2x-1\)
\(\Rightarrow h\left(x\right)=\left(4x^2-3x^2\right)+\left(3x+2x\right)+\left(1-1\right)\)
\(\Rightarrow h\left(x\right)=x^2+5x.\)
b) Ta có \(h\left(x\right)=x^2+5x.\)
Đặt \(x^2+5x=0\)
\(\Rightarrow x.\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=0-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(x=0\) và \(x=-5\) là các nghiệm của đa thức \(h\left(x\right).\)
Chúc bạn học tốt!
bài 2:
Gọi phân số cần tìm là \(\frac{7}{x}\)(x≠0)
Ta có: \(-\frac{9}{10}< \frac{7}{x}< -\frac{9}{11}\)
\(\Leftrightarrow\frac{63}{-70}< \frac{63}{9x}< \frac{63}{-77}\)
\(\Leftrightarrow-77< 9x< -70\)
Vì 9x là bội của 9 và trong dãy số nguyên từ -77 tới -70 chỉ có số -72 là bội của 9 nên 9x=-72
hay x=-8
Vậy: phân số cần tìm là \(\frac{7}{-8}\)
Bài 3:
A=|x+1|+5
Ta có: \(\left|x+1\right|\ge0\forall x\)
\(\Rightarrow\left|x+1\right|+5\ge5\forall x\)
Dấu '=' xảy ra khi
\(\left|x+1\right|=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy: Giá trị nhỏ nhất của đa thức A=|x+1|+5 là 5 khi x=-1
b) Ta có: \(B=\frac{x^2+15}{x^2+3}\)
\(=\frac{x^2+3+12}{x^2+3}=1+\frac{12}{x^2+3}\)
Ta có: \(x^2\ge0\forall x\)
\(\Leftrightarrow x^2+3\ge3\forall x\)
\(\Rightarrow\frac{1}{x^2+3}\le\frac{1}{3}\forall x\)
\(\Rightarrow\frac{12}{x+3}\le4\forall x\)
\(\Rightarrow1+\frac{12}{x+3}\le5\forall x\)
Dấu '=' xảy ra khi
\(\frac{12}{x+3}=4\Leftrightarrow x+3=\frac{12}{4}=3\)\(\Leftrightarrow x=3-3=0\)
Vậy: giá trị lớn nhất của biểu thức \(B=\frac{x^2+15}{x^2+3}\) là 5 khi x=0
ta xét trường hợp: -4:(-x)=-9:(-x) với x<0 (theo đề bài)
ta lắp một số bất kì: -4:(-2)=-9:(-2) => -2=-9:2 (VÔ LÍ)
=>x không thể thỏa mãn được đề bài
kết luận: x thuộc tập hợp rỗng
a,|x2−13x2−13| = 3232
b, 32−1232−12 ( 2x-1)=3434
c, |x-1|+2x=2
a)\(\left|\dfrac{x}{2}-\dfrac{1}{3}\right|=\dfrac{3}{2}\)
TH1
\(\dfrac{x}{2}-\dfrac{1}{3}=\dfrac{3}{2}\)
=>\(\dfrac{x}{2}=\dfrac{11}{6}\)
=>x=\(\dfrac{11.2}{6}\)
=>x=\(\dfrac{11}{3}\)
TH2
\(\dfrac{x}{2}-\dfrac{1}{2}=-\dfrac{3}{2}\)
=>\(\dfrac{x}{2}=-\dfrac{3}{2}+\dfrac{1}{2}\)
=>\(\dfrac{x}{2}=-1\)
=>x=-2
9x-1=\(\dfrac{1}{9}\)
=>9x-1=9-1
=>x-1=-1
x=-1+1
x=0
\(9^{x-1}=\dfrac{1}{9}\)
\(\Rightarrow9^{x-1}=9^{-1}\)
\(\Rightarrow x-1=-1\)
\(\Rightarrow x=-1+1=0\)
Vậy x = 0