K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2020

9x2 - 1 = 3( 3x - 1 )

⇔ ( 3x - 1 )( 3x + 1 ) - 3( 3x - 1 ) = 0

⇔ ( 3x - 1 )( 3x + 1 - 3 ) = 0

⇔ ( 3x - 1 )( 3x - 2 ) = 0

⇔ 3x - 1 = 0 hoặc 3x - 2 = 0

⇔ x = 1/3 hoặc x = 2/3

20 tháng 11 2020

thx bạn nha

12 tháng 8 2021

Trả lời:

a,  \(ĐK:x\ne\frac{1}{3}\)

 \(A=\frac{3x+1-1}{1-3x}:\frac{3x-9x^2}{3x-1}=\frac{3x}{1-3x}\cdot\frac{3x-1}{3x-9x^2}=\frac{3x.\left(3x-1\right)}{\left(1-3x\right)\left(3x-9x^2\right)}=\frac{3x\left(3x-1\right)}{\left(1-3x\right)3x\left(1-3x\right)}\)

\(=\frac{3x\left(3x-1\right)}{3x\left(1-3x\right)^2}=\frac{3x\left(3x-1\right)}{3x\left(3x-1\right)^2}=\frac{1}{3x-1}\)

b, \(5x^2+3x=0\)

\(\Leftrightarrow x\left(5x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\5x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}}\)

Thay x = 0 vào A, ta có :

\(A=\frac{1}{3.0-1}=\frac{1}{-1}=-1\)

Thay x = - 3/5 vào A, ta có :

\(A=\frac{1}{3.\left(-\frac{3}{5}\right)-1}=\frac{1}{-\frac{9}{5}-1}=\frac{1}{-\frac{14}{5}}=-\frac{5}{14}\)

c, \(A=\frac{x}{x-1}\)

\(\Leftrightarrow\frac{1}{3x-1}=\frac{x}{x-1}\)\(\left(ĐK:x\ne\frac{1}{3};x\ne1\right)\)

\(\Leftrightarrow\frac{x-1}{\left(3x-1\right)\left(x-1\right)}=\frac{x\left(3x-1\right)}{\left(3x-1\right)\left(x-1\right)}\)

\(\Rightarrow x-1=3x^2-x\)

\(\Leftrightarrow3x^2-x-x+1=0\)

\(\Leftrightarrow3x^2-2x+1=0\)

\(\Leftrightarrow3\left(x^2-\frac{2}{3}x+\frac{1}{3}\right)=0\)

\(\Leftrightarrow x^2-\frac{2}{3}x+\frac{1}{3}=0\)

\(\Leftrightarrow x^2-2.x.\frac{1}{3}+\frac{1}{9}+\frac{2}{9}=0\)

\(\Leftrightarrow\left(x-\frac{1}{3}\right)^2+\frac{2}{9}=0\)

\(\Leftrightarrow\left(x-\frac{1}{3}\right)^2=-\frac{2}{9}\) (vô lí)

Vậy không tìm được x thỏa mãn đề bài.

d, \(\frac{6}{A}=\frac{6}{\frac{1}{3x-1}}=6\left(3x-1\right)=18x-6\)

Vậy x thuộc Z thì 6/A thuộc Z

NM
12 tháng 8 2021

\(A=\left(3x+1-\frac{1}{1-3x}\right):\left(\frac{3x-9x^2}{3x-1}\right)=\left(\frac{1-9x^2-1}{1-3x}\right):\left(\frac{3x\left(1-3x\right)}{3x-1}\right)=-\frac{9x}{1-3x}:\left(-3x\right)=\frac{3}{1-3x}\)

b. Với \(5x^2+3x=0\Leftrightarrow x\left(5x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\) nhưng mà ở trên ta cần có điều kiện x#0 nên

\(x=-\frac{3}{5}\Rightarrow A=\frac{3}{1-3\times\left(-\frac{3}{5}\right)}=\frac{15}{14}\)

c.\(A=\frac{x}{x-1}=\frac{3}{1-3x}\Leftrightarrow x-3x^2=3x-3\Leftrightarrow3x^2+2x-3=0\Leftrightarrow x=\frac{-1\pm\sqrt{10}}{3}\)

d.\(\frac{6}{A}=2\times\left(1-3x\right)\) nguyên nên \(1-3x=-\frac{k}{2}\Leftrightarrow x=\frac{k+2}{6}\) với k là số nguyên 

11 tháng 10 2020

Đề baì là gì ạ ?

14 tháng 8 2017

My Nguyễn ơi,bạn truy cập vào đường link này để tìm câu hỏi tương tự của câu a/Bài 1 nhé

https://vn.answers.yahoo.com/question/index?qid=20110206184834AAokV5m&sort=N

14 tháng 8 2017

Ko biết đợi đứa khác đê

25 tháng 7 2018

\(a,A=9x^2+5-6x=9x^2-6x+1+4\)

\(=\left(3x-1\right)^2+4\)

Vì: \(\left(3x-1\right)^2+4\ge4\forall x\)

\(\Rightarrow\)GTNN của A là 4 tại \(\left(3x-1\right)^2=0\Rightarrow x=\frac{1}{3}\)

b,\(B=1+x^2-x=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì: \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(\Rightarrow\)GTNN của B là 3/4 tại \(\left(x-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{2}\)

Các phần cn lại lm tg tự nha bn

11 tháng 4 2020

a/2(9x2+6x+1)=(3x+1)(x-2)

⇔2(3x+1)2= (3x+1)(x-2)

⇔ 2(3x+1)2 :(3x+1)=x-2

⇔ 2(3x+1)=x-2

⇔6x+2-x+2=0

⇔5x+4=0

⇔5x=-4

⇔x=\(\frac{-4}{5}\)

b/\(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)

\(\frac{12}{\left(1-3x\right)\left(1+3x\right)}=\frac{\left(1-3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}-\frac{\left(1+3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}\)

⇔12=(1-3x)2-(1+3x)2

⇔-(1-3x-1-3x)(1-3x+1+3x)=--12

⇔-(-6x.2)=-12

⇔12x=-12

⇔x=-1

bạn thấy mình làm sai hay thiếu thì bạn nhớ nhắc mình nha.

12 tháng 2 2018

a)    \(2\left(9x^2+6x+1\right)=\left(3x+1\right)\left(x-2\right)\)

\(\Leftrightarrow\)\(2\left(3x+1\right)^2-\left(3x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\)\(\left(3x+1\right)\left[2\left(3x+1\right)-\left(x-2\right)\right]=0\)

\(\Leftrightarrow\)\(\left(3x+1\right)\left(6x+2-x+2\right)=0\)

\(\Leftrightarrow\)\(\left(3x+1\right)\left(5x+4\right)=0\)

đến đây tự lm nha

b)   \(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)    (1)

ĐKXĐ:    \(x\ne\pm\frac{1}{3}\)

\(\left(1\right)\)\(\Leftrightarrow\)\(\frac{12}{\left(1-3x\right)\left(1+3x\right)}=\frac{\left(1-3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}-\frac{\left(1+3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}\)

\(\Rightarrow\)\(\left(1-3x\right)^2-\left(1+3x\right)^2=12\)

\(\Leftrightarrow\)\(\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)=12\)

\(\Leftrightarrow\)\(-12x=12\)

\(\Leftrightarrow\)\(x=-1\)   (t/m ĐKXĐ)

Vậy....

12 tháng 2 2018

a) \(2\left(9x^2+6x+1\right)=\left(3x+1\right)\left(x-2\right)\)

\(\Leftrightarrow2\left(3x+1\right)^2-\left(3x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left[2\left(3x+1\right)-\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(3x+1\right)\left(6x+2-x+2\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(5x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\5x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=-\frac{4}{5}\end{cases}}}\)

b) ĐKXĐ: \(x\ne\pm\frac{1}{3}\)

\(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)

\(\Leftrightarrow\frac{12}{\left(1-3x\right)\left(1+3x\right)}=\frac{\left(1-3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}-\frac{\left(1+3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}\)

\(\Leftrightarrow\left(1-3x\right)^2-\left(1+3x\right)^2=12\)

\(\Leftrightarrow\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)=12\)

\(\Leftrightarrow-12x=12\)

\(\Leftrightarrow x=-1\) (thỏa mãn)

Vậy x = -1

b: \(x^3+\dfrac{1}{27}=\left(x+\dfrac{1}{3}\right)\left(x^2-\dfrac{1}{3}x+\dfrac{1}{9}\right)\)

c: \(x^3-3x^2+3x-1=\left(x-1\right)^3\)

e: \(a^2y^2-2axby+b^2x^2\)

\(=\left(ay\right)^2-2\cdot ay\cdot bx+\left(bx\right)^2\)

\(=\left(ay-bx\right)^2\)

f: \(100-\left(3x-y\right)^2\)

\(=\left(10-3x+y\right)\left(10+3x-y\right)\)

g: \(64x^2-\left(8a+b\right)^2\)

\(=\left(8x\right)^2-\left(8a+b\right)^2\)

\(=\left(8x-8a-b\right)\left(8x+8a+b\right)\)

22 tháng 6 2017

Ta có :

A= X^3 - 3X^2 + 3X - 1

<=> A= x^3-3*x^2*1+3*x*1^2-1

<=> A=(x-1)^3

thay x=0 vào biểu thức trên ta có

A=(x-1)^3=(0-1)^3=-1

B= X^3 + 3X^2 +3X + 1 VỚI X=1

( tương tự hằng đẳng thức trên)
C= X^3 + 9X^2 + 27X + 27 VỚI X=5

( tương tự)
D= (X+2)^2 - (X-2)^2 VỚI X=-2

<=> D= (x+2-x+2)(x+2+x-2)

<=> D=8x

thay x=-2 ta có D=-16