K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 6 2020

\(f'\left(x\right)=g\left(x\right)=3x^2-6mx-9m^2\)

- Với \(m=0\Rightarrow f'\left(x\right)=3x^2\ge0;\forall x\Rightarrow f\left(x\right)\) đồng biến trên R (ktm)

- Với \(m\ne0\Rightarrow f'\left(x\right)=0\) luôn có 2 nghiệm pb

Để \(f\left(x\right)\) nghịch biến trên \(\left(-3;0\right)\Leftrightarrow f'\left(x\right)\le0;\forall x\in\left(-3;0\right)\)

\(\Leftrightarrow x_1< -3< 0< x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}g\left(-3\right)< 0\\g\left(0\right)< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-9m^2+18m+27< 0\\-9m^2< 0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m>3\\m< -1\end{matrix}\right.\) \(\Rightarrow m=\left\{-5;-4;-3;-2;4;5\right\}\)

AH
Akai Haruma
Giáo viên
20 tháng 7 2017

Bài 1:

Đặt \(\left\{\begin{matrix} x+y=a\\ xy=b\end{matrix}\right.\Rightarrow x^2+y^2+xy=a^2-b=3\)

\(x,y\geq 0\rightarrow b\geq 0\rightarrow a^2=3+b\geq 3\)

Biến đổi:

\(T=(x+y)^3-3xy(x+y)-[(x+y)^2-2xy]\)

\(\Leftrightarrow T=a^3-3ab-a^2+2b\)

\(\Leftrightarrow T=a^3-3a(a^2-3)-a^2+2(a^2-3)=-2a^3+a^2+9a-6\)

Xét đạo hàm và lập bảng biến thiên hàm trên với điều kiện \(a\geq \sqrt{3}\) ta thu được \(T_{\max}=3\sqrt{3}-3\Leftrightarrow a=\sqrt{3}\Leftrightarrow (x,y)=(\sqrt{3},0)\)

Hàm không có min.

Câu 1 : Cho lăng trụ đứng ABC.A'B'C' có AB = AC = 2a , \(\widehat{BAC}=120^0\) . Biết thể tích lăng trụ đã cho bằng \(a^3\sqrt{3}\) . Tính góc giữa hai mặt phẳng (A'BC) và (ABC) A. 150 B. 300 C. 450 D. 600 Câu 2 : Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông tại A . Mặt phẳng (A'BC) chia lăng trụ thành hai phần . Tính thể tích V của khối đa diện có chưa đỉnh B' ; biết BC = A'A =...
Đọc tiếp

Câu 1 : Cho lăng trụ đứng ABC.A'B'C' có AB = AC = 2a , \(\widehat{BAC}=120^0\) . Biết thể tích lăng trụ đã cho bằng \(a^3\sqrt{3}\) . Tính góc giữa hai mặt phẳng (A'BC) và (ABC)

A. 150 B. 300 C. 450 D. 600

Câu 2 : Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông tại A . Mặt phẳng (A'BC) chia lăng trụ thành hai phần . Tính thể tích V của khối đa diện có chưa đỉnh B' ; biết BC = A'A = a

A. V = \(\frac{\sqrt{3}}{2}a^3\) B. V = \(\frac{1}{4}a^3\) C. V = \(\frac{\sqrt{3}}{2}a^3\) D. V = \(\frac{1}{6}a^3\)

Câu 3 : Cho lăng trụ đứng ABC.A'B'C' có đáy ABC vuông cân tại B , AB = \(a\sqrt{2}\) . Góc giữa A'B và mặt phẳng (ACC'A' ) bằng 300 . Tính thể tích khối lăng trụ ABC.A'B'C'

A. 2a3 B. \(2\sqrt{6}a^3\) C. \(\frac{2\sqrt{6}}{3}a^3\) D. \(\frac{2}{3}a^3\)

Câu 4 : Cho lăng trụ đều ABC.A'B'C' có tất cả các cạnh bằng a . Gọi G là trọng tâm tam giác ABC . Mặt phẳng (A'B'G) chia lăng trụ thành 2 phần , tính thể tích phần chứa cạnh AB

A. \(\frac{5a^3\sqrt{3}}{108}\) B. \(\frac{a^3\sqrt{3}}{36}\) C. \(\frac{2a^3\sqrt{3}}{27}\) D. \(\frac{a^3\sqrt{3}}{4}\)

Câu 5 : Tính thể tích V của khối lăng trụ ABC.A'B'C' , tam giác ABC vuông tại B , hình chiếu vuông góc của A lên (ABC) là trung điểm AC . Biết AB = a , BC = \(a\sqrt{3}\) , \(\widehat{\left(A^'B,\left(ABC\right)\right)=45^0}\)

A. V = \(\frac{\sqrt{3}}{8}a^3\) B. V = \(\frac{\sqrt{3}}{4}a^3\) C. V = \(\frac{\sqrt{3}}{2}a^3\) D. V = \(\sqrt{3}a^3\)

4
NV
22 tháng 8 2020

4.

Qua G kẻ đường thẳng song song AB lần lượt cắt AC và BC tại M và N

\(\Rightarrow A'B'NM\) là thiết diện của (A'B'G) và lăng trụ

Theo Talet ta có \(\frac{CM}{AC}=\frac{CN}{BC}=\frac{2}{3}\Rightarrow CM=CN=\frac{2a}{3}\)

Kéo dài A'M, B'N, C'C đồng quy tại P (theo tính chất giao tuyến 3 mặt phẳng)

Do \(CN//B'C'\Rightarrow\frac{PC}{PC'}=\frac{CN}{B'C'}=\frac{2}{3}\Rightarrow\frac{PC}{PC+CC'}=\frac{2}{3}\)

\(\Rightarrow3PC=2\left(PC+a\right)\Rightarrow PC=2a\)

\(\Rightarrow PC'=3a\)

\(MN=\frac{2}{3}BC\Rightarrow S_{CMN}=\frac{4}{9}S_{ABC}=\frac{4}{9}.\frac{a^2\sqrt{3}}{4}=\frac{a^2\sqrt{3}}{9}\)

\(V_{P.A'B'C'}=\frac{1}{3}PC'.S_{A'B'C'}=\frac{1}{3}.3a.\frac{a^2\sqrt{3}}{4}=\frac{a^3\sqrt{3}}{4}\)

\(V_{P.CMN}=\frac{1}{3}PC.S_{CMN}=\frac{1}{3}.2a.\frac{a^2\sqrt{3}}{9}=\frac{2a^3\sqrt{3}}{27}\)

\(\Rightarrow V_{CMN.A'B'C'}=\frac{a^3\sqrt{3}}{4}-\frac{2a^3\sqrt{3}}{27}=\frac{19a^3\sqrt{3}}{108}\)

\(\Rightarrow V_{MNABA'B'}=\frac{a^3\sqrt{3}}{4}-\frac{19a^3\sqrt{3}}{108}=\frac{2a^3\sqrt{3}}{27}\)

NV
22 tháng 8 2020

2.

Đề thiếu dữ kiện ko tính được, chỉ tính được trong trường hợp tam giác ABC là vuông cân.

3.

\(AC=BC=a\sqrt{2}\) ; \(AC=AB\sqrt{2}=2a\)

Gọi M là trung điểm AC \(\Rightarrow BM\perp AC\Rightarrow BM\perp\left(ACC'A'\right)\)

\(\Rightarrow\widehat{BA'M}\) là góc giữa A'B và (ACC'A')

\(\Rightarrow\widehat{BA'M}=30^0\)

\(BM=\frac{1}{2}AC=a\)

\(tan\widehat{BA'M}=\frac{BM}{A'M}\Rightarrow A'M=\frac{BM}{tan30^0}=a\sqrt{3}\)

\(A'A=\sqrt{A'M^2-AM^2}=a\sqrt{2}\)

\(V=\frac{1}{2}A'A.AB.BC=a^3\sqrt{2}\)

Ko đáp án nào đúng

22 tháng 11 2016

\(2^x.3^{x-1}.5^{x+2}=12\\ \Leftrightarrow2^x.\frac{3^x}{3}.\left(5^x.25\right)=12\\ \Leftrightarrow\left(2.3.5\right)^x=\frac{36}{25}\\ \Leftrightarrow30^x=\frac{36}{25}\\\Leftrightarrow x=log_{30}\left(\frac{36}{25}\right)\)

Bạn chép đề có đúng không? Nếu sửa lại đề bài 1 tý thì nghiệm sẽ đẹp hơn

\(2^x.3^{x-1}.5^{x-2}=12\\ \Leftrightarrow2^x.\frac{3^x}{3}.\frac{5^x}{25}=12\\ \Leftrightarrow\left(2.3.5\right)^x=900\\ \Leftrightarrow30^x=900\Leftrightarrow x=2\)

7 tháng 12 2022

Cho mk hỏi là làm thế nào để ra 900 ạ 

26 tháng 11 2018

\(\left(2\right)^x-2.2^{2x}-3.2^{x-1}=0\)
Đặt \(2^x\) = t (t>0)
=> \(t-2t^2-\dfrac{3t}{2}=0\)
=> \(\left[{}\begin{matrix}t=\dfrac{-1}{4}\\t=0\end{matrix}\right.\)( loại)

26 tháng 11 2018

dưới mình giải nhầm kia phải là \(3.2^x\) sau đó bạn đặt t giải ra t => x

AH
Akai Haruma
Giáo viên
17 tháng 11 2018

Lời giải:

Đặt \(2^{\sqrt{x}}=a(a\geq 1)\)

Ta có: \(8^{\sqrt{x}}-3.4^{\sqrt{x}}+2^{\sqrt{x}}=0\)

\(\Leftrightarrow (2^{\sqrt{x}})^3-3(2^{\sqrt{x}})^2+2^{\sqrt{x}}=0\)

\(\Leftrightarrow a^3-3a^2+a=0\)

\(\Leftrightarrow a(a^2-3a+1)=0\)

\(\Rightarrow a=\frac{3+\sqrt{5}}{2}\) do $a\geq 1$

Khi đó: \(\sqrt{x}=\log_2(\frac{3+\sqrt{5}}{2})\Rightarrow x=\left(\log_2(\frac{3+\sqrt{5}}{2})\right)^2\)

NV
19 tháng 11 2018

\(2^{3x}-2.2^{2x}-3.2^x=0\Rightarrow2^x\left(2^{2x}-2.2^x-3\right)=0\)

\(\Rightarrow2^x\left(2^x+1\right)\left(2^x-3\right)=0\) \(\Rightarrow\left[{}\begin{matrix}2^x=0\left(vn\right)\\2^x+1=0\left(vn\right)\\2^x=3\Rightarrow x=log_23\end{matrix}\right.\)

Vậy nghiệm của pt là \(x=log_23\)