
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(a=\sqrt[3]{7+5\sqrt2}+\sqrt[3]{7-5\sqrt2}\)
\(=\sqrt[3]{2\sqrt2+6+\sqrt2+1}+\sqrt[3]{2\sqrt2-6+\sqrt2-1}\)
\(=\sqrt[3]{\left(\sqrt2\right)^3+3\cdot\left(\sqrt2\right)^2\cdot1+3\cdot\sqrt2\cdot1^2+1^3}+\sqrt[3]{\left(\sqrt2\right)^3-3\cdot\left(\sqrt2\right)^2\cdot1+3\cdot\sqrt2\cdot1^2-1^3}\)
\(=\sqrt[3]{\left(\sqrt2+1\right)^3}+\sqrt[3]{\left(\sqrt2-1\right)^3}=\sqrt2+1+\sqrt2-1=2\sqrt2\)
\(D=2a^4+6a^2-28a+2024\)
\(=2\cdot\left(2\sqrt2\right)^4+6\cdot\left(2\sqrt2\right)^2-28\cdot2\sqrt2+2024=2200-56\sqrt2\)

9 đồng dư với - 1 (mod10)
\(\Rightarrow9^{9^{9^9}}\)đồng dư với - 1 (mod10)
\(\Rightarrow9^{9^9}\)đồng dư với - 1 (mod10)
\(\Rightarrow9^{9^{9^9}}-9^{9^9}\)đồng dư với (-1) - (-1) = 0 (mod10)
Vậy ta có ĐPCM
Câu b tương tự

\(9^{9^{9^9}}-9^{9^9}=9^{2a+1}-9^{2b+1}\equiv9-9\equiv0\left(mod10\right)\)

Xét \(9^x\)
Nếu \(x=2k\)thì \(9^x=9^{2k}=81^k\)Luôn tận cùng là 1
Nếu \(x=2k+1\)thì \(9^x=9^{2k+1}=9.81^x\)Luôn tận cùng là 9
Ta có: \(9^9\)tận cùng là 1 là số lẻ
\(\Rightarrow9^{9^9}\)tận cùng là 1, đồng thời cũng là số lẻ
\(\Rightarrow9^{9^{9^9}}\)cũng tận cùng là 1
\(\Rightarrow9^{9^{9^9}}-9^{9^9}\)tận cùng là 0 nên chia hết cho 10
Bạn ơi mình nhầm nhé.
\(9^9;9^{9^9};9^{9^{9^9}}\)đều tận cùng là 9, mình viết nhầm thành 1 nha. Xin lỗi bạn.

9 + 9 + 9 + 9 + 9 = 9 ^ 5 = 59049
k #Ngọc
kp liền nha !!!!



9 + 9 + 9 x 17 x 91 + 921 - 21 340 = 9 + 9 + 13 923 + 921 - 21 340
= 18 + 13 923 + 921 - 21 340
= 13 941 + 921 - 21 340
= 14 862 - 21 340
= - 6478